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Abstract: Khondab area is located in western Markazi province, within the Sanandaj-Sirjan Zone. 

The zone has been previously known to be associated with Pb, Zn, Cu, Fe, Ba and Si elements. The 

current study is carried out to identify new promising targets for regional exploration. Multiple data 

sources (e.g., magnetic surveys, faults, geological and satellite data) are processed and then 

integrated by using Fuzzy Logic modelling to produce a final prospectivity map for regional 

exploration of MVT deposits in the Khondab area. Finally, resulted prospectivity map is validated 

by analyzing field derived samples collected over revealed promising zones of the study area and 

ore-microscopic studies of the collected samples also confirmed MVT mineralization.Validation 

process indicates that Cretaceous limestone units are in high correlation with MVT mineralization 

in this area. Based on priority rating of exploration targets, the eastern and the south-eastern parts of 

the study area are the most promising parts for further exploration of MVT deposits. 

Keywords: Fuzzy Logic modelling; Khondab area; MVT; Sanandaj-Sirjan Zone. 

1- Introduction 

Acquiring the pre-known exploration models 

and proper integration techniques to delineate 

new promising zones is widely recommended in 

mineral prospectivity mapping. There are two 

GIS-based integration techniques including 

data-driven and knowledge-driven modelling 

techniques. In the first case, mineralization 

features of the pre-known deposits are applied 

over the unknown ones. Some common methods 

of this approach are including: weight of 

evidence (Bonham-Carter, 1994), logistic 

regression (Chung and Agterburg, 1980), 

decision tree analysis (Reddy and Bonham-

carter, 1991) and neural networks (Brown et al., 

2000). The mentioned methods are applicable 

only if the number of the same pre-known 

deposits and their associated information are 

sufficient for further decision makings. Due to 

this limitation of data-driven methods, 

knowledge-driven methods were introduced 

(Bonham-Carter, 1994). Based on these 

methods, different crisp values are assigned to 

the informative layers one after another 

assuming their respective relative importance 

toward the mineralization process. The crisp 

values are assigned based on the exploration 

expert’s knowledge. Methods including Boolean 

logic, index overlay (Harris et al., 2001) and 

fuzzy logic (An et al., 1991) are classified as 

knowledge-driven methods. Previous studies 

have already demonstrated that fuzzy modelling 

approach within GIS environment is widely 

accepted among geoscience experts. The 

approach is widely used in exploration of iron 

deposits (An et al., 1991), Mississippi Valley-

Type (MVT) mineralization (Eddy et al., 1995) 

and also epithermal gold deposits (Carranza et 

al., 1999). An et al. (1991) used a reclassified 

lithology map combined with several 

geophysical maps to generate a fuzzy model and 
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then plotting a perspective plot of base metals 

and iron deposits in Farley Lake exploration 

area located in Canada (An et al., 1991). 

Getingz and Bultmann (1993) used fuzzy 

function to plot the mineral potential map of 

quartz-carbonate bearing veins of southeast 

parts of Arizona in USA. Different crisp values 

are assigned to each informative layer due to the 

technical expert’s knowledge. The resulted 

maps are integrated using fuzzy overlay 

technique to create a map of favourable areas of 

mineralization (Gettings et al., 1993).Karimi 

and Valdan Zoej (2003) created a mineral 

potential map of Rigan copper mineralization in 

the Kerman region, Iran. Cheng and Agterberg 

(1999) proposed weighted fuzzy models for 

mineral potential mapping. Carranza and Hale 

(2001) performed a geologically-constrained 

fuzzy mapping of gold mineralization. Macedon 

and Ara´ujo (2002) used fuzzy logic approach in 

creation of the favourability map associated 

with sulphide iron mineralization. Porwall et al. 

(2003) used both knowledge-driven and data-

driven fuzzy approaches in creation of mineral 

potential maps of Sedimentary Exhalative 

Deposits (SEDEX) in Aravalli province 

(western India). Eddy et al. (2006) used fuzzy 

logic approach for exploration of MVT lead- 

zinc deposits. Eliasi et al. (2007) created a 

mineral potential map of Now-Chun copper 

deposit which made a significant progress in 

finding promising drill targets. Nykanen et al. 

(2008) used fuzzy logic approach to plot 

regional-scale mineral potential maps of Iron 

Oxide Copper Gold Deposits (IOCG) in 

Finland. Adeli (2009) provided mineral 

potential map of Chah-Firuzeh exploration area 

and proposed some promising drilling targets. 

Pazand and Hezarkhani (2018), Pazand et 

al.(2014) acquired a multi-criteria fuzzy logic 

approach within GIS environment to find out 

new promising zones of porphyry copper 

mineralization. Finally, Rasekh et al. (2016) 

applied fuzzy logic data integration to locate 

new promising zones of copper mineralization 

in Kajan area, Isfahan, Iran. 

The current study is theoretically similar to 

above-mentioned studies and includes different 

exploration data sets of geological map, 

airborne magnetometer surveys, faults and 

satellite data. The data are integrated by fuzzy 

logic data integration technique to identify 

special proxies related to MVT mineralization. 

The proxies imply promising targets of MVT 

mineralization in Khondab area. Different 

samples are also collected from the promising 

targets of fuzzy logic model. The samples are 

then studied using a polarizing microscope 

hosted in Department of Mining Engineering at 

Isfahan University of Technology. Microscopic 

studies of the polished and thin sections 

confirmed mineralization characteristics of 

MVT mineralization. 

2- Geological Setting 

The study area is located in western Markazi 

province, within the Sanandaj-Sirjan Zone. 

Rock types of the study area are divided into 10 

major units. The units of the area ranges from 

calcareous sandstones to calcareous illitic slates. 

Lower-middle Jurassic units are the oldest ones 

composed of slates and phyllites. These units 

have been widely covered the west, the 

northwest, the southwest and the north of the 

area. Shemshak Formation has covered the 

oldest rock unit of the area and is comprised of 

slaty sandstone units. The formation itself is 

covered by lower cretaceous limestones and 

monzodioritic-monzonitic units. Figure 1 shows 

the location map of the Khondab area in the 

Sanandaj-Sirjan Zone and also the 1:100000 

geological map of the area. 
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Figure 1) Simplified geological map of the Khondab area. 

 
Figure 2) Schematic diagram of the fuzzy logic data integration procedure. 

3- Discussion 

Fuzzy logic approach is considered as a 

knowledge-driven modelling method. It applies 

membership functions (µ) and different 

combinations of fuzzy operators to prepare a 

final weighted prospectivity map. 

Mathematically, a fuzzy set, A, is a set of 

ordered pairs (Ziaii et al., 2009): 
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A={(x,µ(x))│xϵΧ}                               (1) 

Where X= collection of objects, also known as 

the universal set and µ(x) = membership 

function or degree of compatibility of x in µ(x). 

The range of µ(x) is [0, 1]; where 0 represents 

non-membership and 1 represents full 

membership. An et al. (1991) proposed that the 

five operators of fuzzy AND, fuzzy OR, fuzzy 

algebraic product, fuzzy algebraic sum and 

fuzzy gamma are applicable for integrating 

exploration datasets. The fuzzy OR takes the 

maximum value of any of the input maps, for 

any individual pixel. Meanwhile, AND operator 

takes the minimum value of any of the input 

maps, for any particular pixel. The OR operator 

is used where two map patterns represent the 

same level of evidence. The resulted 

combination of data sets by this operator 

suggests evidences at higher probabilities. 

Gamma operator (γ) is a combination of the 

fuzzy algebraic product and the fuzzy algebraic 

sum operators. The operator produces output 

values that ensure a flexible compromise 

between the increasing tendencies of the fuzzy 

algebraic sum and the decreasing effects of the 

fuzzy algebraic product. During the following 

sections, multiple datasets (aeromagnetic, faults, 

geological and satellite data) are processed 

separately (Fig. 2) and fuzzy membership value 

of each individual informative layer is 

calculated using ArcGIS fuzzy logic toolbox. 

3.1- Geological data 

Upper Jurassic to lower Cretaceous rock types 

of the study area are covered almost 52% of the 

surficial geologic map (The other 48% of the 

surface is made up of alluvial). Major rock types 

of the area are Jurrassic sandstones and slates. 

Cretaceous rock units consist of calcareous 

sandstones, sandy limestones, dolomitic 

sandstones and calcareous illitic slates. 

Considering the significant role of intermediate 

plutonic bodies in MVT mineralization, we 

assigned them the highest crisp value (9 out of 

10). These bodies are located in eastern and 

south-eastern parts of the study area. Intrusive 

units have the key role in providing 

mineralization conditions such as the required 

heat source. Hence, intrusive units are 

considered as one of the important rock units 

and got the weight of 7 out of 10. Additionally, 

the weight of 3 is assigned to sandstones and 

Jurassic sandy slates due to their poor 

relationship with mineralized occurrences of the 

study area. Finally, alluvial and Quaternary 

sediments got the weight of 1 out of 10 and 

urban areas got the weight of 0 (Table 1). Final 

weighted evidence map of geological layer is 

shown in Figure 3. 

 
Figure 3) Weighted evidence map of rock types of 

the study area. 

3.2- Airborne magnetic data 

In this section, countrywide airborne magnetic 

data of Iran is used. This data is carried out in 

1976 with resolution of 7.5 Km. RTP correction 

is done using Oasis Montaj® 4.3 geophysical 

software (Fig. 4). Within the map (Fig. 4), 

geomagnetic responses vary between -650 to 

+150 nT. Significant negative values are related 

to faults and probably wide hydrothermal 

alterations. Also, significant positive values are 

assigned to intrusive intermediate to basic 
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subsurface bodies. Low to intermediate values 

indicate sedimentary and metamorphic rocks. 

Based on the geomagnetic responses, evident 

map of airborne magnetic data is classified into 

5 different classes. 

 
Figure 4) Figure 4. RTP map of the study area. 

 
Figure 5) Reclassified geophysical map of the study 

area. 

According to the resulted map of the airborne 

magnetic data, the study area is classified into 

three main zones. Two of them show significant 

magnetic anomalies and are related to 

ferromagnetic minerals of the deep intermediate 

plutonic units. Direction of the two mentioned 

anomalies shows features with the same trend 

(NW-SE) as the promising rock types of the 

study area. Depletion of magnetic responses in 

NE and SE parts of the area are due to the 

widely spreading alluvial over these areas. 

Assuming the decisive role of plutonic bodies in 

preparing the required thermal source of 

mineralization, the weight of 7 out of 10 is 

considered for these bodies (Table 2). Resulted 

map is then reclassified into five different 

classes according to technical expert’s 

knowledge (Fig. 5). 

3.3- Remote sensing data 

The silicification process is in high correlation 

with MVT mineralization. Hence, silicified 

zones are very important for targeting MVT 

mineralization. Quartz is the main mineral of 

silicified zones and is indicated by ASTER 

thermal infrared wavelength region. To 

delineate silicified zones, selective principal 

component analysis is carried out on the thermal 

infrared wavelength region of ASTER satellite 

imagery data according to Crosta technique. In 

Crosta Technique, the magnitude and 

positive/negative value of a special vector 

provide useful information regarding spectral 

characteristics of vegetarians, stones and clays. 

This information is projected in any PC or 

component. High spectral differences of the 

second PC is considered to be relevant to the 

silicified zones. Considering the significant role 

of residual silicified hydrothermal fluids in 

transporting metallic elements and consequent 

deposition of ore deposits, the highest weight (9 

out of 10) is assigned to this type of alteration. 

The resulted map is then reclassified into two 

classes so that one of the classes specifies the 

qualified areas (Weight 9 out of 10) and the 

other one identifies non-qualified areas (weight 

1 out of 10), (Table 3 and Fig. 6). 

Dolomitization is in high consistence with the 

carrying canals of ore-bearing fluids. Hence, to 
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target the dolomitized zones, ROWAN band 

ratio is used. ROWAN (2003) is introduced by 

USGS as follow: 

R[S(6,8),7]                                                    (2) 

 
Figure 6) Silicified alteration zones of the study 

area. 

 

Figure 7) Dolomitized alteration zones of the study 

area. 

Assuming the importance of dolomitization in 

MVT mineralization, the weight 7 out of 10 is 

assigned to this type of alteration (Fig. 7). 

Muscovite is generally considered as an 

indicator for phyllic alteration. To identify 

phyllic alteration zones, optical absorption 

spectrum features of muscovite is used (Sameni, 

2001). According to absorption (6th band) and 

reflectance (4th band) of muscovite’s spectra, 

band ratio of 4/6 is proposed for locating 

muscovite in the study area. The 4th PC is then 

specified to be the proper one in Crosta 

transformation technique. Comparing with the 

two types of silicification and dolomitization 

alterations, phyllic alteration has the third 

position of importance in MVT mineralization.  

 
Figure 8) Phyllic alteration zones of the study area. 

 
Figure 9) Final weighted map of alteration zones of 

Khondab area. 
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Hence, the weight 5 is assigned to this type of 

alteration (Fig. 8). After mapping the 

alterations, three weighted evidence maps of 

each alteration type are integrated by OR fuzzy 

operator (Table 3 and Fig. 9). 

Table 1) Detailed information of lithology units. 

Evidence Map 
Layer 

Weight 
Class Name 

Class 

Weight 

Class 

Score 

Logestical Fuzzy 

Membership 

 

 

 

Lithology Units 

Evidence Map 

9 

Light grey illite bearing slate 

with intercalation of calcareous 

slate, biomicritic recrystallized 

limestone and calcareous silty 

slate 

 

6 54 0.71 

Brownish light grey slaty 

recrystallized limestone, 

calcareous slate and sandy slate 

with intercalation 
 

8 72 0.94 

Greyish yellow slightly 

metamorphosed recrystallized 

Orbitolina bearing dolomitic 

limestone , sandy limestone and 

biomicritic limestone 

 

9 81 0.97 

Grey thick bedded to massive 

slightly metamorphosed 

Orbitolina bearing limestone 
 

9 81 0.97 

Buff thin to medium bedded 

slightly metamorphosed 

Orbitolina bearing marly 

limestone 

 

6 54 0.71 

Yellowish cream and dark grey 

slightly metamorphosed 

sandstone , calcareous 

sandstone , sandy limestone , 

dolomitic limestone , siltstone 

and conglomerate 

 

7 63 0.86 

Alternation dark grey and pink 

slightly metamorphosed 

sandstone with quartzitic 

sandstone in lower part and pale 

pink quartzite in upper part 

 

3 27 0.14 

Silicic Vein 
 

6 54 0.71 

Dark grey slightly 

metamorphosed sandstone with 

intercalation of pale pink 

quartzitic sandstone and 

quartzite 

 

3 27 0.14 

Assemblage undivided dark 

grey sandstone and slate  

3 27 0.14 

Dark grey slightly 

metamorphosed slate , phyllite , 

schist and locally with 

intercalation of sandstone 
 

5 45 0.50 

Monzodiorite - Monzonite (Post 

_Early Cretaceous)  

7 63 0.86 

Microdiorite _ 

Micromonzodiorite (Post _ 

Early Cretaceous) 
 

7 63 0.86 

Recent alluvium 
 

1 9 0.03 

Urban Infrastructures -- 0 0 0.01 

3.4- Structural data 

In order to trace faulted structures of Khondab 

area, the six Landsat ETM+ bands of 1 to 7 

(except the 6th band due to its poor resolution), 

are analyzed. Using Optimum Index Factor 

(OIF) index, the proper RGB combination is 

defined as 7, 4, 3. As a result of principal 

component analysis of the RGB map, the first 

PC is selected due to its high spectral 
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differences. Directional filters are applied on 

resulted RGB map of Landsat ETM+ in different 

directions to identify proper direction of faulted 

structures (Figs. 10 and 11). Regarding well 

specification of faulted structures, the structures 

are also mapped using geological map of the 

study area and then buffered by1500 meters in 

five classes (Fig. 12). The two resulted maps of 

structural features are integrated through OR 

fuzzy operator and got the weight 8 out of 10 in 

final fuzzy membership operation (Table 4 and 

Fig. 13). 

 
Figure 10) Rose diagram of faulted structures of 

Khondab area. 

 
Figure 11) Map of faulted structures of Khondab 

area. 

 
Figure 12) Buffered faulted structures of Khondab 

area. 

 
Figure 13) Final weighted map of faulted structures 

of Khondab area. 

3.5- Final fuzzy integration procedure 

In this step, fuzzy operators are applied to the 

fuzzy membership values and final mineral 

prospectivity map of Khondab area is resulted 

after converting the output data to non-fuzzy 

values (Defuzzification) (Fig. 14). 

Defuzzification is done according to Gamma 

membership value of 0.9 associated with surface 
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measurement plot of the study area (Fig. 15). 

Based on promising targets and geological 

features of the area, priority rating exploration 

map is proposed as it is shown in Figure 16. 

 
Figure 14) Final defuzzied prospectivity map of 

Khondab area. 

 
Figure 15) Gamma membership value associated 

with surface measurement plot of the study area. 

3.6- Validation of Fuzzy Logic Integration 

Modelling 

Finally, revealed promising zones of fuzzy logic 

prospectivity map is compared to previously 

known mineral occurrences of the study area. 

Promising regions of the prospectivity map are 

mostly overlapped by the exposed mineralized 

zones and previously known deposits of the area 

(Fig. 17).  

 
Figure 16) Final prospectivity map of Khondab 

area. According to priority rating of exploration 

targets which vary between 1 to 4, the east and the 

south eastern parts of the study area are the 

promising parts for further prospectivity of MVT 

deposits in Khondab area. 

 
Figure 17) Validation map of fuzzy logic integration 

modelling. As it is clear in the map, most of the 

known deposits are overlapped by the resulted 

promising areas of fuzzy logic data integration 

technique. 
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Microscopic studies of the polished thin 

sections also confirmed MVT mineralization 

features of the exposed mineralized zones (Fig. 

18). 

 
Figure 18) Microscopic images of the collected samples of Khondab area. As it is clear in the pictures, 

specified minerals are the frequent ones associated with MVT mineralization. (a) Sample Code: CB1P-1-

PPL Image at X160 Magnification, (b) Sample Code: ZCT12.P5-PPL Image at X160 Magnification, (c) 

Sample Code: CB12P-1-PPL Image at X160 Magnification, (d) Sample Code: ZCT13.P8-PPL Image at 

X160 Magnification, (e) Sample Code: Sample Code: CB1P-3-PPL Image at X160 Magnification, (f) Sample 

Code: ZCT14.P2-PPL Image at X100 Magnification, (g) Sample Code: CB5-1-PPL Image at X160 

Magnification, (h) Sample Code: CB2P-2-PPL Image at X160 Magnification, (i) Sample Code: CB12P-2-

PPL Image at X160 Magnification, (j) Sample Code: CT2P-6-PPL Image at X160 Magnification, (k) Sample 

Code: CB12P-2-PPL Image at X160 Magnification, (l) Sample Code: CB12P-2-PPL Image at X160 

Magnification. 
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Table 2) Detailed information of geophysical layer. 

Evidence Map 
Layer 

Weight 

Class 

Name 

Class 

Weight 

Class 

Score 

Logestical Fuzzy 

Membership 

Geophysical Evidence Map 7 

So High 9 63 0.98 

High 7 49 0.88 

Medium 5 35 0.5 

Poor 3 21 0.12 

So Poor 1 7 0.01 

 

Table 3) Detailed information of the remote sensing layer. 

Evidence Map 
Layer 

Weight 
Class Name 

Class 

Weight 

Class 

Score 

Linear Fuzzy 

Membership 

Alteration Evidence Map 6 

Silicification 9 54 0.9 

Dolomitization 7 42 0.7 

Phyllic 5 30 0.5 

 

Table 4) Detailed information of laminated structures. 

Evidence Map 
Layer 

Weight 
Class Name 

Class 

Weight 

Class 

Score 

Linear Fuzzy 

Membership 

Faults Density & Structural Features 

Evidence Map 
8 

very high 

density 
9 72 

0.9 

High Density 8 64 0.75 

Medium 

Density 
7 49 

0.50 

Low Density 6 48 0.25 

very Low 

Density 
5 40 

0.01 

4- Conclusion 

Based on the resulted prospectivity map of 

fuzzy logic model, the occurrence probability of 

MVT mineralization in Sanandaj-Sirjan zone is 

not too high. Processing ETM+ satellite imagery 

data by Crosta transformation technique results 

in three important hydrothermal alteration zones 

of silicified, dolomitized and phyllic. The 

alteration zones are mostly associated with the 

known MVT mineralized zones of the study 

area. Resulted map of the fuzzy model is in 

accordance with field evidences. Validation 

process indicates that Cretaceous limestone 

units are in high correlation with MVT 

mineralization in this area. Based on priority 

rating of exploration targets, the eastern and the 

south-eastern parts of the study area are the 

most promising parts for further exploration of 

MVT deposits. 
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