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Abstract 

Soil loss erosion is one of the most serious environmental problems (widespread globally), which is 

a menace to sustainable ecosystems and agriculture. As the previous studies show, the world’s 

highest soil loss rates due to erosion are in three continents, i.e. Asia, Africa, and South America. A 

new method was proposed to statistically evaluate the most appropriate cell size for LS factor input 

and to study the effects of using the appropriate cell size in calculating the erosion’s total soil loss.  

Different models have been used. Among others, Revised Universal Soil Loss Equation (RUSLE) is 

used in this study. This model needs five parameters such as slope length and steepness (LS), crop 

cover (C), rainfall erosivity (R), soil erodability (K), and prevention practice (P) with the help of 

Geographical Information System (GIS) using raster technique whereby all the parameters are 

mapped in the form of grid layers of a specific cell size. The proposed methodology shows a way to 

comprehend how to implement and estimate annual soil loss erosion. Different celsize are selected 

and applied to data of Nibong Tebal Penang as a sample test. LS factors have been comprised  

where semivariogram models are fitted to the height information based on the 20-m contourline 

topographic map. The results show that with increasing cell size up to 50m, the nugget effect 

decreases and spatial dependency increases. The best spatial dependency and high variances and 

diversity of 50 m cell spacing, the Digital Elevation Model (DEM) of this cell size is found the 

most appropriate for such dataset. According to the results, by using geostatistical techniques which 

can identify the best DEM cell size in order to make the suitable raster analysis for decision in the 

case of DEM spacing, could be applied to select a suitable cell spacing in DEM to predict 

topographical factor in soil erosion modeling. Basically, these techniques lead to find DEMs 50m 

from topographic map with 20m interval contour lines. In general, the results of this study have 

confirmed that the geostatistical analysis and statistical approaches together can be applied to select 

an adequate cell spacing in DEM and also to predict topographical factor in RUSLE model. 

Keywords: Environmental problems; Soil erosion; GIS; (Nibong Tebal Penang, North West of 

Malaysia). 

1- Introduction 

Soil erosion is one of the significant 

environmental hazard and land degradation 

challenge experienced worldwide. About 80% 

of the world’s agricultural land suffer from 

moderate to severe erosion (Moses, 2017). Soil 

erosion is broadly defined as the accelerated 

removal of topsoil from the land surface through 

water, wind or tillage (FAO, 2016). One of the 

main causes of soil erosion is water erosion, 

which is the loss of topsoil due to water (Jim 
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Ritter,  2015). Water erosion on agricultural 

land occurs mainly when overland flow entrains 

soil particles detached by drop impact or runoff, 

often leading to clearly defined channels such as 

rills or gullies. Wind erosion occurs when dry, 

loose, bare soil is subjected to strong winds. 

Wind erosion is common in semiarid areas 

where strong winds can easily mobilize soil 

particles, especially during dry spells. This 

dynamic physical aeolian process includes the 

detachment of particles from the soil, transport 

for varying distances depending on site, particle 

and wind characteristics, and subsequent 

deposition in a new location, causing onsite and 

offsite effects (FAO, 2016). Ritter,  (2015)  

emphasized that Raindrops fall directly on 

topsoil. The impact of the raindrops loosens the 

material bonding it together, allowing small 

fragments to detach. If the rainfall continues, 

water gathers on the ground, causing water flow 

on the land surface, known as surface water 

runoff. This runoff carries the detached soil 

materials away and deposits them elsewhere. 

The FAO estimates that 11.6% of Africa north 

of the Equator, and 17.1% of the Near East, is 

subject to water erosion, as are 90 million 

hectares (of a total of 297 million) in India and 

Malaysia. In Nepal the removal of topsoil by the 

monsoon rains do double harm, first by 

denuding the hillsides, and second by filling the 

Himalayan rivers with silt.  Therefore, As the 

previous studies show, the world’s highest soil 

loss rates due to erosion are in three continents, 

i.e. Africa, South America, and Asia (south east 

of Asia in Malaysia) specially in the study area, 

averaging approximately 26,768 pounds (12.1 

metric tons) to 35,637 pounds (16.2 metric tons) 

for all them. 

In recent decades, several models have been 

developed for estimating soil erosion by some 

other researchers such as Universal Soil Loss 

Equation (USLE) (Wischmayer and Smith, 

1965), Modified 2 Universal Soil Loss Equation 

(MUSLE) (Williams, 1975), and Revised 

Universal Soil Loss Equation (RUSLE) (Renard 

et al., 1997), Water Erosion Prediction Project 

(WEPP) (Flanagan and Livingston, 1995) and 

so on. Gelagay, (2016) attempted to assess and 

map the spatial distribution of sediment yield of 

Koga watershed in a GIS and remote sensing 

environment. Turner et al. (2018) documented 

that  all of the cases of soil erosion in Colorado, 

Kansas, Nebraska, North Dakota, and Texas 

reduced watershed capacities to regulate runoff 

occurred in areas where recent land use has 

shifted away from native and towards  increased 

cultivated landscapes wind erosion. 

Previous twenty year process has been exhibited 

which agree with the using GIS tools propagate 

together USLE and RUSLE- emerged 

justification of the algorithm applied to raise the 

slope length (Kay et al., 2016; Merrittet et al., 

2003; Tung  et al., 2018). Geographic 

Information System (GIS) and Remote Sensing 

(RS) integrations can recognize soil erosion 

areas in which there exists some potential risk 

of extensive soil erosion and the estimated 

amount of soil loss on various locations. Today, 

soil erosion is a more ominous than any other 

time in history. Soil loss and its associated 

impacts are one of the most important (yet 

probably the least well-known) environmental 

problems of today’s life. There is no more 

destructive phenomenon than those caused by 

wind and water on a global scale. The soil 

erosion factors, e.g. water, wind, and tillage, 

affect both the agriculture and the natural 

environment. Numerous models of various 

prediction capabilities and utilities have been 

developed. The advent of technological tools 

such as RS and GIS has significantly enhanced 

the usefulness of soil erosion models. The 

coupling of GIS and RS with empirical and 

process-based soil erosion models have 

improved their predictive capability. GIS stores 

the essential database needed as input for 

modeling erosion and elaboration of maps of 

erosion-affected areas. RS and GIS tools also 

allow the scaling up of the modeled data from 
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small plots (e.g. RUSLE) for large areas 

(Humberto Blanco et al., 2015). 

Currently, the data from RUSLE model are 

readily available in GIS format. The GIS 

capabilities are the unique representation of 

erosion characteristics within a grid cell 

environment at fine resolutions. The accuracy of 

RUSLE calculations using larger grid sizes can 

be studied within the GIS environment by 

applying the equation at a wide range of cell 

sizes. This type of erosion is triggered by 

anthropogenic causes such as deforestation, 

slash and burn agriculture, intensive plowing, 

intensive and uncontrolled grazing, and biomass 

burning (Terrence et al., 2002). In RUSLE, the 

LS factor is much more essential to the soil 

erosion. The soil erosion increases as the slope 

length and steepness increase, although it is 

more sensitive to slope steepness than to slope 

length. Therefore, the LS factor is combined 

from two factors as follows: 

The slope length factor L which is a 

fundamental slope length measured in meters. 

Considering the importance of soil erosion is to 

identify, anticipate and prevent the effective 

factors. So, topography factor is the main factor 

in RUSLE method. The LS factor depends on 

the slope length and steepness, and shows 

topographic effects on soil loss. This factor is 

calculated using DEM. DEM is used to select 

the most appropriate cell size for calculating LS. 

In such cases, it is very frequent that the correct 

cell size is not given enough attention so that 

this ignorance will be inherited into the 

subsequent use of the raster layer, e.g. 

calculating the total annual soil loss. 

The RUSLE has been used in this context 

efficiently to model the soil erosion. The spatial 

parameters in RUSLE equation, i.e. topography 

and land use can be generated by remote 

sensing techniques. These factors can be 

converted to raster layers as the input layer into 

a GIS for analysis and provide a soil erosion 

risk map. There are different factors in the soil 

erosion but water and wind are most important 

than them. In Malaysia peninsular, the water 

erosion is the most significant factor due to high 

mean annual rainfall, storm density and 

frequency (Ooshaksaraie et al., 2009). Also the 

most significant effect is observed when the 

vegetation is disturbed or removed. The removal 

of vegetation leads to an increase in the speed 

and volume of surface runoff. So, the increasing 

of the volume and velocity of the surface runoff 

(especially in the hilly terrains) causes it to be 

considered in soil erosion. The erosion by 

running water may take place in the form of rill 

or gully erosion notably in the loose sandy 

granitic soils or reworked residual soils 

(University of Malaya Consultancy Unit, 2003). 

Malaysia is subjected to high intensity and more 

frequent rain storms than most developed 

countries and thus it requires more stringent 

control measures, structural or non-structural to 

deal with the problem (Ooshaksaraie et al., 

2009). 

In Malaysia, several soil erosion studies have 

been conducted using previous approach 

(USLE): including the soil erosion study of the 

Bakun Dam project (Samad and Patah, 1997), 

the soil erosion risk assessment for Genting 

Highlands (Jusoff and Chew, 1998), and the soil 

erosion and soil risk maps for Langkawi Island 

(Wan Yusof and Baban, 1999). The 

deterministic and rigid decision approach is a 

common use of GIS for formulation assessment. 

This method is based on two assumptions: first, 

the data set is complete and free of errors and 

second, the decision rule does not add any error 

to the outcome. However, it is clear that 

geographically based data set without error does 

not exist due to measurement error. 

Generally, the soil erosion takes place in two 

different kinds of process. First, detaching the 

individual particles of the soil mass, and second, 

transporting their erosive factors, e.g. running 

wind and water. When there not exists enough 

energy to transfer sediment particles, 

sedimentation will occur. There are two main 
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types of erosion: geologic (natural) and 

accelerated erosion. The erosion is a natural 

process which can level mountain ranges over 

millions of years. New soils can be formed 

through the slow weathering of the parent rock 

material and from the deposition of airborne or 

waterborne sediments. Under the normal 

climatic conditions and with natural ground 

cover, the soil erosion can often balance out 

with the rate of soil production. This is called 

natural or geological erosion. 

Erosion can be accelerated by human activities. 

The removal of surface vegetation and residue 

cover occurs in: 

- Agricultural Cultivation  

- Rangeland Grazing  

- Forest Harvesting  

- Surface Mining  

- Urban Highway Construction  

All these activities disturb the soil structure and 

reduce the soil's resistance for detaching. 

RUSLE is a series of mathematical equations 

that estimates the average annual soil loss and 

sediment yield resulting from in terrill and rill 

erosion. RUSLE is an exceptionally well-

validated and documented equation. RUSLE is a 

model to predict annual soil loss erosion at 

longtime average, based on several parameters, 

i.e. slope length and steepness, rainfall-runoff, 

cover management, soil erodibility and support 

practice. The yield of slope length (L) and 

steepness (S) is topographic factor LS, implying 

the topographic effect on soil loss. 

For an accurate prediction, obtaining the spatial 

dependency with an appropriate DEM spacing, 

which represents the spatial characteristics in 

the LS factor, is essential. It is clear that 

choosing appropriate DEM spacing is very 

important and may affect the results of 

consequent computation such as soil loss (due to 

erosion). A new method proposed the objectives 

to statistically evaluate the most appropriate cell 

size for LS factor input and to study the effects 

of using the appropriate cell size in calculating 

the erosion’s total soil loss. 

2- Study Area and Datasets 

The study area Nibong Tebal Penang in which 

the northwest region of peninsular Malaysia  is 

located between latitude 5° 09' 57.1" N and 

logtitude 100° 28' 40.5" E as indicated in Figure 

1. The climate in this area is influenced by both 

the northeast and southwest monsoons and 

annual rainfall is approximately 1300mm in the 

lower plain, but more in the hilly and 

mountainous area. Maximum rainfall occurs 

during September to January and Temperature 

is usually 27°C, Wind NW at 0 km/h, 87% 

Humidity (Malaysian Meteorology Department, 

2018). The extent of this area is approximately 

110 Km2, 90 % of which is covered by forests. 

 
Figure 1) The study area . 

Data needed for this research include: 

- R factor (from rainfall data) 

- K factor (obtained from soil map and 

soil samples) 
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- LS factor (obtained from topographic 

map- contours) 

- C factor (obtained from the Remote 

Sensing image) 

- P factor (obtained from Remote Sensing 

image and previous site visit) 

Data that contain maps of land use type 

acquired from Department of Town Regional 

Planning and the soil maps with the P, C, and K 

factors obtained from the Agriculture 

Department. Moreover, the digital topographic 

map and its derivative LS factor can be gained 

from the Survey and Mapping Department 

(JUPEM). Finally, rainfall data and R factor 

were obtained from information recorded in the 

Meteorological Department, Malaysia. As 

shown the study area and the captured data in 

Figure 2. 

 

 

Figure 2) The study area and required data for 

RUSLE model.  

3- Methodology 

The framework of the methodology is based on 

three steps, i.e. capturing data, processing and 

analyzing of DEM for obtaining the appropriate 

cell size, and concluding and providing annual 

soil erosion map, which would help to figure out 

all desired parameters. Collections of 

hydrological and topographic maps, satellite  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

images, and soil samples statistical analysis via 

mapping of annual soil loss erosion with five 

factors implemented to achieve the aim of the 

research. 

The factors calculate the effect of slope 

steepness (S) and slope length (L) on erosion. 

The slope steepness and slope length factor had 

been calibrated from a digitized topographic 

map of the study area. The digitized topographic 

map in line format (GIS shapefile) was then 

converted to digital elevation model (DEM) 

using TIN to grid extension. 
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E = 9.28 – 8838.15       (Eq. 1) 

Where, P= Average annual rainfall in mm, R 

computed from the relation the Eq 2: 

R = EI30/ 1000        (Eq. 2) 

Where, EI30 = annual summation of rainfall 

energy in 30-minute intensity (suggested 75 

mm/hr). 

Table 1) The average rainfall in the study area.  

FID Shape ID GRIDCODE ALUE COUNT LABLE AVGRAIN 

0 Polygon 1 4 4 668924 1349-1420 1385 

1 Polygon 2 3 3 735428 1279-1349 1314 

2 Polygon 3 2 2 1092996 1210-1279 1245 

3 Polygon 3 2 2 1092996 1210-1280 1245 

4 Polygon 4 1 1 1405308 1140-1210 1175 

The generated data from above equation were 

entered into an ArcGIS database for spatial 

distribution analysis of rainfall erosivity around 

the study area. Table 1 shows classified data 

into four groups including 1385, 1314, 1245 and 

1175. Figure 3 shows the process to provide R 

factor.  

 
Figure 3) The process to generate R factor. 

Based on contour line with 20m interval TIN 

generated and boundary. TIN layer converts into a 

raster layer based on four cell sizes comprise 30, 50, 

100 and 300 m resolution to create the most 

appropriate celsize. Figure 4 shows the distribution 

of rainfall in different parts of the study area. 

In this study, the soil erodibility equation and 

nomograph modified by Wischemier and Smith 

(1978) had been applied to quantify soil 

erodibility factor. 

The soil erodability factor was calculated from 

the data obtained from grain size analysis, 

structure, permeability, and organic matter 

content by the Eq. 3: 

K = [2.1× 10-4 (12 - O.M %) (N1 × N2)1.14 + 

3.25 (S -2) + 2.5 (P-3)] / 100                  (Eq. 3) 

Soil classification of the study area is divided 

into two types of soil with different soil 

characteristics. Table 2 shows the detail of soil 

types. 

Table 2) K values for different soil texture. 
Type soil  Permeability  

(%)  

Silt  

(%)  

Sand  

(%)  

Fine sand  

(%)  

Permeability/ Silt+ 

sand (%)  

Organic materials 

(%)  

K values  

(%)  

Rengam  19.80  5.80  27.80  46.6  0.59  2.80  0.26  

Serdang  18.00  4.30  41.3  36.4  0.39  5.24  0.18  

In equation RUSLE, land cover is very 

important for the calculation, as well as soil loss 

which depend on the sensitivity to vegetation 

cover with slope steepness and length factor 

(Renard and Ferreira, 1993; Benkobi et al., 

1994; Biesemans et al., 2000). Vegetation cover 

is an essential factor for protection of soil that 

causes to dissipate the raindrop energy before 

reaching the soil surface. Index value of crop 

management factor was estimated by using 
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vegetation characteristics derived from satellite 

images. Crop cover index is obtained by 

refering to theory of Morgan (1986) for each 

type of crop management in the study area. 

 
Figure 4) The distribution of rainfall in different 

parts of the study area 

Table 3) Classification of C factors 

Landuse type C value 

Water Bodies 0.000 

Dense Forest 0.001 

Forest 0.002 

Orchard 0.1 

Open Space 0.3 

Table 3 indicates more than 90 percent of the 

study areas, were covered by forest. With the 

values listed in the Table 3, the grid can be 

generated with the C factor in study area. The 

result is shown in Figure 5 that shows how to 

capture C values. 

The selected model influences the prediction of 

the unknown values. Kriging uses the 

semivariance to measure the spatially correlated 

component that is computed by the Eq. 4: 

Y(h)1/2 [z(xi) –z(xj) ]2                      (Eq. 4) 

z (xi) and z(xi +h) = values of variable z at xi 

xi+h, respectively. 

xi and xi+h = position in two dimensions. 

Kriging is an advanced geostatistical procedure 

that generates an estimated surface from a 

scattered set of points with Z-values. Unlike the 

other interpolation methods supported by 

ArcGIS spatial analyst, kriging involves an 

interactive investigation of the spatial behavior 

of the phenomenon represented by the Z-values 

before selecting the best estimation method for 

generating the output surface. 

Exploratory Spatial Data Analysis (ESDA) 

promotes understanding about natural 

phenomena so that it can make better decisions 

on the issue related to the data. 

 
Figure 5) The process of generating C factor. 
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Figure 6) Map provided for the C values.  

Some methods in the geostatistical analyst 

require that the data to be normally distributed. 

If data points are not normally distributed, they 

can be close to normal using of different 

transformation option. There are two methods as 

follows. 

The Box-Cox transformation is shown by the 

Eq. 5: 

Y(s) = (Z(s) λ - 1)/λ,   for λ≠ 0                  (Eq 5) 

The log transformation is actually a special case 

of the Box-Cox transformation when λ = 0; the 

transformation is described by the Eq. 6: 

Y(s) = ln(Z(s)), for Z(s) > 0                    (Eq 6)  

Where ln is the natural logarithm. 

The log transformation is often used where the 

data has a positively skewed distribution and 

there are a few very large values. The log 

transformation will help make the variances 

more constant and it normalizes the data if these 

large values are located in the study area. 

The geostatistical analyst can provide various 

types of map layers including probability maps, 

quantile maps, prediction maps and prediction 

standard error maps. The method used in this 

research is the universal probability by using 

spherical model because can be used to predict 

where values exceed a critical threshold. 

Calculation equation spherical is shown in the 

Eq. 7: 

g(h)= {c˳.  ﴾ (1.5(h/a)- 0.5(h/a)  ﴿  if h≤a  (Eq. 7) 

Universal kriging assumes that the spatial 

variation in Z values has a drift or a trend in 

addition to the spatial correlation between the 

sample points. Typically, universal kriging 

incorporates a first order (plane surface) or a 

second order (quadratic surface) polynomial in 

the kriging process. 

After fitting to the model, RMS (Root Mean 

Square Error) is criterion to select optimal 

models for skewness estimations and accuracy 

which is used. The Eq. 8 shown as follow: 

RMS =  1/n  (zi,act - zi,est )2 = RMS/S 

    (Eq 8) 

Where:  

n = number of points  

zi,act = known value of point i  

zi,est = estimated value of point i  

s = standard error. 

RMSE represents the degree of accuracy which 

is estimated to be least for skewness. The RMS 

statistic is available for all exact local methods. 

But the standardized RMS is only available for 

kriging because the variance is required for the 

computation. The interpretation of the statistics 

is: 

A better interpolation method should yield a 

smaller RMS and a standardized RMS closer to 

1. 

There are several methods to calculate the 

topography factors. The Eq. 9 is provided by 

Wischeier and Smith (1978). Using the kriging 

method to prepare relevant information for them 

and using statistical techniques can achieve the 

most appropriate digital elevation model. 
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Figure 7) Slope created from DEM 50m by 50m.  

LS=(l/22.13)n(0.065+0.045s+0.0065s2) (Eq. 9)  

Where, l is the slope length (m) and s is the 

slope gradient in percent. n = 0.5 for Slope > 

5%, 0.4 for slope 3.5 to 4.5%, 0.3 for slope l to 

3.5%, and 0.2 for slope less than 1. The Eq. 11 

is provided by McCool et al. (1989). 

LS = (l / 22) m (10.8 Sin b + 0.03) for slopes < 

9.0%,                                                       (Eq. 10)  

LS = (l /22) m (16.8 Sin b + 0.5) for slopes 

9.0% m = F / (l + F), and F = (Sin b / 0.0896) / 

(3Sin b 8.0 + 0.56)  

The Eq 3.12 is obtained by McCool et al. (1989) 

LS = (l/ 22.13)0.5, (0.172 s - 0.55)        (Eq. 11)  

Where: 

l = slope length in meters, and s = slope gradient 

in percent  

The Eq 12 is obtained by SLEMSA (Elwell, 

1978). 

LS (X) = ( l (0.76 + 0.53 s + 0.0765 s2) / 25.65 

(Eq. 2). 

The Eq. 13 used in this study was presented by 

Moore and Wilson (1992). 

LS = [A/ 22.13] m [Sinβ / 0.0896] n     (Eq. 13) 

Where: 

A = upslope contributing area divided by the 

width of the contour that area contributes. The 

m and n = constants are equal to 0.6 and 1.3, 

respectively. 

β = land surface slope in degrees. 

 

Figure 8) Slope length generated as “A” index. 

In other words, A is the up-slope contributing 

area per unit width of cell spacing from which 

the water flows into a given grid cell. 

Therefore, LS factor calculates the coefficients 

of the slope length, i.e. A, and the steepness, i.e. 

Sinβ. For estimating Sinβ the slope layer should 

be generated by using DEM 50m. Figure 7 

shows slope layer from less than 5° to greater 

than 99° slope. 

To calculate A index based on command the 

flow accumulation values need to be calculated 

as slope length. 

The equation 14 is used to calculate complete 

flow water on each of cells as a slope length. 

The slope length is shown in the Figure 8. 
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Figure 9) LS provided from DEM 50m by 50m.  

pow([flowacc50]*50 size / 22.13, 0.4)* pow(Sin 

([slope50]) / 0.0896, 1.3)                       (Eq. 14) 

In Eq. 14, LS factor could be generated with 

different cell size using the equation and it can 

be used as a factor in the topography factor. 

Figures 10 show LS factor provided from DEM 

50 by 50 meters. The process of generating LS 

factor is shown in Figure 11. 

The last step in the suitability model is to 

combine the reclassified outputs, e.g. LS, C, K, 

R, and P, and to take those objectives which 

have more importance in the suitability model, 

the datasets that can be weighted, giving those 

datasets that should have more importance in 

the model a higher percentage influence 

(weight) than the others into account. 

Continuous (floating-point) rasters must be 

reclassified as integer before they are used. 

Figure 11 shows establish a model builder using 

RUSLE. 

4- Results and Analysis 

The most popular model is advanced 

geostatistical procedure (kriging) generates an 

estimated surface from a scattered set of points 

with Z-values. Because Universal kriging 

assumes that spatial variation in Z-values has a 

drift or a trend in addition to the spatial 

correlation between the sample points, in this 

study, the Universal kriging Interpolation is 

used by second-order (quadratic surface) 

polynomial. 

 

Typically, universal kriging incorporates a first-

order (plane surface) or a second-order 

(quadratic surface) polynomial in the kriging 

process. This can be modeled by a deterministic, 

polynomial function. This polynomial is 

subtracted from the original measured points. 

Figure 12 shows the spherical mathematical 

model. 

The semivariogram modeling is a key role 

between spatial description and spatial 

prediction. The main aim of using kriging is the 

prediction of attribute values at unknown 

locations. The empirical semivariogram 

prepares information on the spatial 

autocorrelation of datasets. 

 

 
Figure 10) The process of generating LS factor. 
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Figure 11) Model-builder designed for RUSLE.  

Exploratory Spatial Data Analysis (ESDA) 

environment can be manipulated and explored 

based on different insights into the data, such as 

the distribution of the data, spatial 

autocorrelation, and covariation among multiple 

data sets. ESDA makes it possible to understand 

more about the phenomena so that better 

decisions about the related issues to the data can 

be made. 

Randomly, 200 points selected for all DEMs 

sizes. The data distribution is roughly 

symmetrical and it is close to a normal 

distribution. The right tail indicates a relatively 

small number of samples with high elevation 

value concentrations. The distribution of the 

elevation attribute is shown by a histogram 

using the range of values classified into 10 

classes and also the data is unimodal and fairly 

symmetric. 

 

Figure 12) The spherical mathematical model 

The kurtosis and skewness are two important 

factors in Table 4 Both coefficients show the 

distribution and symmetry of sample points that 

are identified as followed: 

- Skewness coefficient for symmetrical 

distribution is equal to 0. If 

asymmetrical is toward the larger data, 

in this case the coefficient is positive and 

it is the negative if the coefficient is 

toward smaller ones. 

- Kurtosis coefficient for normal 

distribution is equal 3. If the kurtosis is 

bigger than 3, it is leptokurtic but for 

smaller than 3, it will be platykurtic. 

Skewness and kurtosis for data DEMs with 30, 

50, 100, and 300 are shown in Table 4. The 

sample distributions of other produced DEMs 

have a relatively good symmetry. 
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Table 4) The sample points distribution of DEMs after and before transformation using log method. 

Cell Size (m) Before transform After transformation 

 Skewness Kurtosis mead median Skewness Kurtosis mead median 

DEM30 0.57288 2.668 954.51 880 -0.32772 4.3762 6.8212 6.7799 

DEM50 0.59573 2.6684 971.55 896.55 -0.401 5.4134 6.8411 6.7986 

DEM100 0.92768 2.0128 935.35 882.07 0.48715 2.363 6.8056 6.7823 

DEM300 0.84979 2.837 902.97 902.97 0.42361 2.2999 6.8399 6.8057 

4.1- The Semivariogram – Covariance Cloud 

Analysis  

Using the semivariogram and covariance cloud 

can examine the spatial autocorrelation between 

the measured sample points. In the spatial 

autocorrelation it is assumed that those which 

are closer to one another are more alike. To do 

this, a semivariogram value which is the 

difference squared between the values of each 

pair of locations is drawn on the y-axis relative 

to the distance separating each pair on the x-

axis. Each red point in the 

semivariogram/covariance cloud shows a pair of 

locations. In the semivariogram the close 

locations (far left on the x-axis) should have 

small semivariogram values (low on the y-axis) 

because the locations that are close to each other 

should be more alike. So the more the distance 

pairs of locations increases (move right on the 

x-axis), the more the semivariogram values 

increase (move up on the y-axis). However, 

when the cloud flattens out, it reaches a certain 

distance which indicates that the relationship 

between the pairs of locations beyond this 

distance is no longer correlated. Figure 13 to 

Figure 16 show the semivariogram with 0, 45, 

90, 135 degree direction. 

According to Figure 13 to Figure 16, if 

semivariograms show that those location points 

are close together (near 0 on the x-axis) and 

have a higher semivariogram value (high on the 

y-axis) than would expect, these pair points 

should be investigated that each of them has a 

possibility to have inaccurate location. 

Another factor is essential to interpret a 

semivariogram is direction. Semivariogram can 

also be examined by direction. A semivariogram 

plots the average semivariance against the 

directional component. One or more average 

semivariances may plot at the same distance. If 

spatial dependence exists among the sample 

points, then pairs of points that are closer in 

distance will have more similar values than 

pairs that are father apart (If spatial dependence 

has directional differences, then the 

semivariance values may change more rapidly 

in one direction than the other ones). In other 

words, the semivariance is expected to increase 

as the distance increases in the presence of 

spatial dependence.  
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Figure 13) The semivariogram with 0°, 45°, 90°, and 135° directions (DEM 30m by 30m). 

 

Figure 14) The semivariogram with 0°, 45°, 90°, and 135° directions (DEM 50m by 50m). 
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Figure 15) The semivariogram with 0°, 45°, 90°, and 135° directions (DEM 100m by 100m).  

 

Figure 16) The semivariogram with 0°, 45°, 90°, and 135° directions (DEM 300m by 300m). 

4.2- Implementation of model  

In order to provide an efficient and optimal 

model, it requires to investigating the obtained 

exact statistical data. Figure 17 shows the points 

scattered in the empirical semivariogram. The 

geostatistical analyst calculates some default 

parameters for models such as nugget, partial 

sill, lag, etc. The lag is the size of the distance 

classes in which pairs of locations are grouped. 

The groping of the data values in this way is 

called “binning”. Because the data has been 

binned, there are fewer points on the 

semivariogram graph. Therefore, the lag size 

should be adjusted. The lag size can be the 

average distance between neighboring DEMs 

samples that are obtained. The best lag size has 

determined in this study is 300 meters. Figure 
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17 shows how to fit the data and the obtained 

values for nugget and sill. 

Decreasing variance in the nugget implies a 

reduction of noise and within-cell spatial 

variability due to the data resampling. One other 

important characteristic is the ratio of the nugget 

to the sill [C0 / (C0 + C)] which reflects a 

quantity called spatial variance. This ratio for 

DEM 30m is 0.512693 and its value for DEMs 

50m increases to 0.965852. When the amount of 

DEMs cell sizes increases the nugget values 

decreases in return. As results, DEM 50-meter 

cell size leads to maximum nugget and spatial 

variance. Therefore, this research shows that 

DEM 50m is the most suitable for topographic 

map with 20 meter interval which gives the 

maximum information for calculating the LS 

factor. 

 

Figure 17) The semivariogram fitted for DEM 300m by 300m. 

Figure 18 shows the map plotted for DEMs 

based on 50m cell size using universal kriging 

method. As it can be seen on this map, the 

distribution DEMs maximum values in the 

Southeast have greater height than north and 

northwest. 

Finally, via choosing the most appropriate cell 

size the annual soil erosion and the rest of 

created factors can be calculated using RUSLE 

equation. Figure 19 shows the areas that were 

affected by erosion and annual soil erosion 

maps. The dots of red colored in the figure have 

more potential ability for soil erodibility. 
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According to the results, by using geostatistical 

techniques which can identify the best DEM cell 

size in order to make the suitable raster analysis 

for decision in the case of DEM spacing. 

Basically, these techniques lead to find DEMs 

50m from topographic map with 20m interval 

contour lines. 

Table 5) The data captured from the semivariogram. 

Grid sell 

size (m) 

Model Nugget 

C0 

Partial Sill 

C1 

Sill 

C = C0 + 

C1 

ME RMS C1/C 

DEM30 Spherical 0.0075609 0.0079548 0.0155157 0.02952 0.2708 0.512693 

DEM50 Spherical 0.0053492 0.01513 0.1566492 0.03321 0.2435 0.965852 

DEM100 Spherical 0.0009848 0.0082398 0.0092246 -0.00075 0.2671 0.893240 

DEM300 Spherical 0.0005208 0.0096265 0.0101473 -0.00306 0.1594 0.948675 

 

Figure 18) Universal Kriging map with DEM 50m. 
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.  

Figure 19) Annual soil erosion map. 

5- Conclusions 

Modeling soil erosion due to the complexity of 

the earth and using GIS requires several 

essentially factors such as the best cell size, high 

resolution DEM (digital elevation model), 

formulation of erosion models suitable for 

digital representation of spatially parameters 

distributed, and reliable computation for 

estimation topographic parameters. The 

geostatistical analyst tool and its toolset like 

kriging in GIS and also its other details, e.g. the 

digitized contour lines which are taken from 

topographic map are very useful for the accurate 

calculations of the appropriate DEMs. 

In general, this study not only demonstrates that 

increases in cell sizes of DEMs which can cause 

losing some of information and can reduce the 

accuracy and quality of the results in such 

researches but also shows the important role of 

the geostatistical analysis techniques in this 

case. 

The estimated RUSLE erosion and specific 

erosion values illustrate relatively high 

variability in terms of spatial and temporal 

characteristics together with the effect of using 

different grid cell size. The RUSLE model is 

able to calculate annual soil erosion in the long 

time by using several parameters, e.g. slope 

length, steepness, Support practice, soil 

erodibility, and rainfall. This method is one of 

the most important ways for calculating the LS 
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or topographic factor, because the accuracy and 

quality of the obtained results depends on 

resolution of DEM. This study deals with 

geostatistical methods and interpolation for how 

to use and carry out kriging method in the 

researches. The plotted results from 

semivariograms show that for preparation of the 

digital elevation model with best spatial 

dependency, the DEM 50m provided from 

topographic map with 20m interval contour 

lines is the best option. 

In general, the results of this study have 

confirmed that the geostatistical analysis and 

statistical approaches together can be applied to 

select adequate cell spacing in DEM and also to 

predict topographical factor in RUSLE model.  
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