
Journal of Tethys: Vol. 5, No. 2, 115–127                                                                                                    Ghadimi, 2017 

115 

 

Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the 

Groundwater in the Arak Urban Area 

 

Feridon Ghadimi 1,* 

 

1- Associated of professor, Department of Mining Engineering, Arak University of Technology, 

Arak, Iran PO BOX 38181-41167. 

* Corresponding Author: ghadimi@arakut.ac.ir 

Received: 20 August, 2016 / Accepted: 30 February 2017 / Published online: 05 March 2017 

Abstract 

This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, 

using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the 

groundwater from Arak city. 150 data samples and several models were trained and tested using 

collected data to determine the optimum model in which each model involved two inputs and three 

outputs. This SVR model fit captures the prime idea of statistical learning theory in order to obtain 

a good forecasting of the dependence among the major elements in the city of Arak. Finally, on the 

basis of these numerical calculations using SVR model, from the experimental data, conclusions of 

this study are exposed. By comparison between the predicted and the measured data it indicates that 

SVR model has strong potential to estimation of the heavy metals in the groundwater with high 

degree of accuracy. 

Keywords: Groundwater; Support vector regression; Heavy metals; Arak. 

1- Introduction 

Many factors control the chemical composition 

of groundwater, which include the composition 

of precipitation, mineralogy of watersheds and 

geochemical processes (Andre et al., 2005; 

Singh et al., 2014; Zghibi et al., 2014). These 

processes effect on water quality and are 

responsible for variations in the groundwater 

composition (Helstrupe et al., 2007; Monjerezi 

et al., 2011; Yidana 2010; Anderson et al., 

2014). Quality of water depends not only on 

chemical and physical properties of surrounding 

rocks but also varies as a result of human 

activity (Monjerezi et al., 2011; Matiatos et al., 

2014; Devic et al., 2014; Zapata et al., 2014). 

Hydro-chemical processes, including 

dissolution, precipitation, weathering together 

with residence time occurring along flow path, 

control variation in chemical composition of 

groundwater (Oinam et al., 2012; Wang et al., 

2013; Srinivasamoorthy et al., 2014; Masoud 

2014). 

Moreover, over the years, the application of 

artificial neural network (ANN) in different 

fields of engineering has been developing. An 

artificial neural network (ANN), usually termed 

neural network (NN), is a mathematical model 

or computational model that is based on the 

structure and functional aspects of biological 

neural networks. The use of the artificial neural 

networks (Haykin 1999; Hassan et al., 2014) of 

multilayer perceptron (MLP) type as the model 

of pollution was exploited frequently in the last 

years (Aguirre-Basurko et al., 2006). In this 

research work, it is proposed the system focused 

on the support vector machines (SVM) due to 

their versatility to tackle complex and highly 

nonlinear problems with success (Bishop, 2006; 
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Shawe-Taylor and Cristianini, 2004; Chen, 

2015). The SVM networks are built for the 

prediction of each considered heavy metals (Pb, 

Zn and Cu) in the groundwater from Arak city. 

On the other hand, similar to conventional feed-

forward (FF) neural networks (NN), the SVM 

has been used by researchers to solve 

classification and regression problems (Suárez 

Sánchez et al., 2011a, b). Possessing similar 

universal approximation ability, SVR can also 

be used to model nonlinear processes. 

Compared with the FFNN models, the SVR 

model has certain advantages. In the first place, 

training for the SVR gives place to a global 

optimum. This is due to the fact that SVR is 

formulated as a convex quadratic optimization 

problem for which there is a global optimum 

(Deng et al., 2012). On the other hand, the 

training of (FF) and (NNs) may become trapped 

at a local minimum. Therefore, mathematically, 

the SVR model has more attractive properties 

than the NN model. The second advantage is 

that the design and training for the SVR model 

are relatively more straightforward and 

systematic as compared with those for the NN 

model. The third advantage is that it is relatively 

easier to achieve good generalization when 

using SVR as compared with NNs. Finally, the 

SVR is a type of model that is optimized so that 

prediction error and model complexity are 

simultaneously minimized. To fix ideas the 

formulation of SVR captures the main finding 

of statistical learning theory in order to obtain a 

good generalization so that both training error 

and model complexity are controlled, by 

explaining the data with a simple model (Deng 

et al., 2012; Abbasi et al., 2013). The objectives 

of this study were as follow: 1) to explore 

applications of a support vector machines(SVR) 

methods in predicting heavy metals in 

groundwater 2) to develop a model based on 

support vector machines and evaluate the 

applicability of the SVR approach to assess and 

predict heavy metals in groundwater.  

 

Figure 1) Location map of the study area showing and some of sample locations. 
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2- Materials and methods 

2.1- Area Descriptions 

Arak is characterized by a semi-arid climate and 

an average precipitation and temperature of 

about 280 mm/year and 11 oC, respectively 

(Zamani, 1999). Most of its inhabitants are 

concentrated in town of Arak with more than 

600000 inhabitants and work mainly in the 

industrial plants (Figure1). The study area is 

situated in the alluvial plain and aquifer is 

directly fed by a stream of water coming from 

different reliefs surrounding the depression 

inter-mountainous of Mighan playa. The plain 

hosts a large number of water-wells with depths 

varying from 70 to 150 m. The direction of 

groundwater flow around Arak plain is from 

southwest to northeast and toward saline 

Mighan playa. Arak is one of the regions that its 

groundwater affected by contamination of 

industrial origin. The Arak is one of the 

industrial regions in Iran where the impact of 

rapid population growth and industrialization on 

limited natural sources and agricultural lands is 

progressively high and as a result, the size of 

uncontaminated areas is being diminished. Due 

to expanding industrialization and urbanization 

in Arak and the unrestrained disposal of factory 

wastes to groundwater, it is thought that heavy 

metal contents in this region are high. 

Therefore, monitoring of this change and 

determination of contamination in the 

groundwater has gained importance. 

2.2- Groundwater sampling 

Water samples were collected from shallow 

wells for urban water supply using standard 

sampling procedures during sampling 

campaigns in 2014. The shallow wells were 

drilled to depths between 70 and 150 m. Total 

of 150 samples were taken for this study. 

Samples were collected in 250 ml sterilized 

polythene bottles. All samples were analyzed 

for main chemical descriptors using standard 

methods. Parameters analyzed include major 

ions of calcium (Ca), magnesium (Mg), 

potassium (K), sodium (Na), chloride (Cl), 

sulfate (SO4) in milligram per liter using ion 

chromatograph (I.C). Bicarbonate ion 

concentration in water was determined by 

titration. Heavy metals were determined by 

Graphite Furnace Atomic Absorption 

Spectrophotometer (Perkin–Elmer Analyst 700) 

using multi element Perkin–Elmer standard 

solutions. Accuracy of chemical analysis was 

verified by calculating ion-balance errors where 

errors were generally within 10%. 

2.3- Support vector regression 

Let us consider a simple linear regression 

problem trained on data set 

 , ; 1,...,i iu i n    with input vectors ui and 

linked targets vi. A function g(u) has to be 

formulated approximately in order to link up 

inherited relations between the data sets and 

thereby it can be used in the later part to infer 

the output v for a new input data u. Standard 

SVM regression uses a loss function Lε (v, g(u)) 

which describes the deviation of the estimated 

function from the original one. Several types of 

loss functions can be mined in the literature e.g., 

linear, quadratic, exponential, Huber’s loss 

function, etc. In the present context the standard 

Vapnik’s – ε insensitive loss function is used 

which is defined as Eq.(1): 


( )

( , ( ))
( )

for g u
o

L g u
g u

otherwise

 

  

 




       
(1) 

Using ε-insensitive loss function, one can find 

g(u) that can better approximate the actual 

output vector v and has the at most
                                               

 

error tolerance ε from the actual incurred targets 

vi  for all training data, and concurrently as flat 

as possible(Fletcher1987). Consider the 

regression function defined by Eq. (2): 

( ) .g u w u b                                              (2)                                                                                                                                                                                                                  

where w ∈  ,    is the input space; b ∈ R is a 

bias term and (w. u) is dot product of vectors w 

and u. flatness in Eq. (2) refers to a smaller 

value of parameter vector w. By minimizing, the 
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norm ||w||2 flatness can be ascertained along 

with model complexity. Thus regression 

problem can be stated as the following convex 

optimization problem (Eq. (3)): 

*, , ,
min

iw b  
 

2 *

1

1

2

N

i i

i

w c  
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          (3) 

( . )i i iw u b       
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  *. i i iw u b      

*
0, 1.2, ....,i i i n      

where i
 and 

*

i
 are slack variables introduced 

to evaluate the deviation of training samples 

outside ε-insensitive zone. The trade-off 

between the flatness of g and the quantity up to 

which deviations greater than ε are tolerated is 

depicted by C > 0. C is a positive constant 

influencing the degree of penalizing loss when a 

training error occurs. Under fitting and over 

fitting of training data are avoided by 

minimization of the regularization term w2/2 

along with the training error term 

 *

1

n

i ii
c  


 ) in Eq. (3). The minimization 

problem in Eq. (3) represents the primal 

objective function. Now the problem is dealt by 

constructing a Lagrange function from the 

primal objective function by introducing a dual 

set of variables, i and i for the 

corresponding constraints. Optimality 

conditions are exploited at the saddle points of a 

Lagrange function leading to the formulation of 

the dual optimization problem (Eq. (4)): 

.
max

i i 
                                                             (4) 

      
, 1 1 1

1
.

2

n n n

j j i j j i j

i j

i i i

i

i

i

u u         
  

          

Subject to          
1

0
n

i

i

i 


               (5) 

0 , 1,2,...,i c i n                              

0 , 1,2,...,i c i n    

After determining Lagrange multipliers i and 

i  the parameter vectors w and b can be 

evaluated under Karush–Kuhn–Tucker (KKT) 

complementarily conditions which are not 

discussed herein (Fletcher, 1987). Therefore, the 

prediction is a linear regression function that 

can be expressed as Eq. (5): 

 
1

.
n

i ii

i

g u u u b 


                             (5) 

Thus SVM regression expansion is derived; 

where w is depicted as a linear combination of 

the training patterns i  and b can be found 

using primary constraints. For |g(u)|≥ε Lagrange 

multipliers may be non-zero for all the samples 

inside the ε-tube and these remaining 

coefficients are termed as support vectors. 

Now for making SVM regression to deal with 

non-linear cases; pre-processing of training 

patterns ui has to done by mapping the input 

space   into some feature space   using 

nonlinear function      and is then 

applied to the standard support vector algorithm. 

Also the dimensionality of 
( )x  can be very 

huge, making ‘w’ hard to represent explicitly in 

memory, and hard for the quadratic 

programming optimizer to solve. The theorem 

Kimeldorf and Wabha shows that: 

 
1

.
n

i i

i

w x 


  for some variables. Instead of 

optimizing ‘w’ we can directly optimize i . 

There by the decision function is obtained 

(kernel trick1). The theorem is exploited to 

examine the sensitivity properties of ε-

insensitive SVR and introduce the concept of 

approximate degrees of freedom (Fletcher, 

1987). The degrees of freedom play a vital role 

in the assessment of the optimism i.e., the 

difference between the expected in sample error 

and the expected empirical risk. Let ui be 
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mapped into the feature space by nonlinear 

function  u  and hence the decision function 

is given by Eq. (6): 

   , .g w b w u b                                     (6)                                                                                                    

This nonlinear regression problem can be 

expressed as the following optimization 

problem. Figure 2 depicts the concept of non-

linear SV regression corresponding to Eq. (7). 
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where w is the vector of coefficients i
 and 

*

i
 are the distances of the training data set 

points from the region where the errors less than 

ε are ignored and b is a constant. The index i 

label the ‘n’ training cases. Then, the dual form 

of the nonlinear SVR can be expressed as Eq. 

(8): 
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The “kernel trick”      , ,i j i jk u u u u   is 

used for computations in input space   to fetch 

the inner products into feature space . Any 

function satisfying Mercer’s theorem should be 

used as kernels. Finally, the decision function of 

nonlinear SVR with the allowance of the kernel 

trick is expressed as Eq. (9): 

 
1

( ) .
n

ii i

i

g u k u u b 


                       (9)    

 
Figure 2) Nonlinear SVR with ε-insensitive loss 

function (It shows an example of a one-dimensional 

regression function with an ε-insensitive band. The 

variables ξ measure the cost of the errors on the 

training points) (Fletcher, 1987). 

The parameters that impact over the 

effectiveness the nonlinear SVR are the cost 

constant C, the radius of the insensitive tube ε, 

and the kernel parameters. These parameters are 

mutually dependent over one another and hence 

altering the value of one parameter affects the 

other linked parameters also. The parameter C 

checks for the smoothness/flatness of the 

approximation function. A smaller value of C 

yields a learning machine with poor 

approximation due to under fitting of training 

data. A greater C value over fits the training 

data and sets its objective to minimize only the 

empirical risk making way for more complex 

learning. The parameter ε is related with 

smoothing the complexity of the approximation 

function and controls the width of the ε-

insensitive zone used for fitting the training 

data. The parameter ε influences over the 

number of support vectors, and then both the 

complexity and the generalization capability of 

the approximation function is dependent upon 

its value. It also governs the precision of the 

approximation function. Smaller values of ε 

lead to more number of support vector and 

results in complex learning machine. Greater ε 
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values result in more flat estimates of the 

regression function.  

 

Figure 3) Network architecture of SVM (It shows the 

stages involved in the implementation of kernel 

pattern analysis. The data is processed using a 

kernel to create a kernel matrix, which in turn is 

processed by a pattern analysis algorithm to 

produce a pattern function) (Fletcher, 1987). 

Determining appropriate values of C and ε is 

often a heuristic trial-and-error process. Figure3 

shows the general network architecture of SVM. 

3- Results 

3.1- Hydrochemistry of groundwater 

The mean concentrations of the major ions in 

the groundwater of Arak city are within the Iran 

Standard guidelines (TTPW, 2011) for drinking 

water (Table1). In the groundwater of Arak 

aquifers, concentrations of the Pb, Zn and Cu 

are higher than the recommended Iran Standard 

guidelines. The value of Pb, Zn and Cu ranges 

from 3 to 9 mg/l, 4 to 50 mg/l and 2 to 52 mg/l 

in the groundwater and the recommended Iran 

Standard ranges 0.05mg/l, 5 mg/l and 0.05 mg/l, 

respectively (Table 1).  

Table1) Statistical characteristics of hydro-chemical variables in groundwater(units to mg/l). 

Variables Mean Median Minimum Maximum 

Cl 95 79 6.50 242 

4SO 213 245 23 320 

3HCO 166 156 55 410 

Ca 242 250 80 400 

Mg 22 20 7.50 43 

Na 215 205 38 400 

K 0.88 0.82 0.30 1.90 

Fe 0.02 0.02 0.01 0.23 

Mn 0.01 0.01 0.001 0.10 

Pb 7.10 7 3 9 

Zn 16 14 4 50 

Cu 14 12 2 52 

The maximum Cl and SO4 concentrations of 

242 mg/l and 320 mg/l respectively are, 

however higher than their respective Iran 

standard guidelines of 200 mg/l, and 250 mg/l. 

These are resulted from contamination of 

sources such as domestic sewage and 

agricultural activities. Maximum concentrations 

of some of the major ions such as Na are higher 

than the Iran standard. All other major 

parameters have concentrations lower than the 

standard guideline limits. The aquifers of the 

alluvial Arak, which are mostly sedimentary 

aquifers, therefore produce groundwater of 

acceptable quality for most uses. 

3.2- Estimation of heavy metals using SVM-

based regression 

To simulate heavy metals in groundwater using 

SVR, all relevant parameters should be 

determined, due to the fact that (SVR) work 

based on given data and do not have previous 

knowledge about the subject of prediction. 

Following sections describe the input and output 

parameters and simulation of heavy metals in 

groundwater using SVR. 
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3.2.1- Input and output data 

According to the correlation matrix HCO3 and 

SO4 that have most dependent on heavy metals 

(Pb, Zn and Cu) concentrations were selected as 

inputs of the network (Table 2).The outputs of 

network were heavy metals concentrations 

including Pb, Zn and Cu. In SVM-based 

regression any type of input can be used as long 

as they have effects on output results. To train 

and verify the accuracy and ability of the SVR, 

a total of 150 data samples records in 

groundwater from Arak city, were used in this 

research. In total, two input parameters 

including HCO3,SO4 (major ions) and output 

including Pb, Zn and Cu (heavy metals) were 

used to estimation of heavy metals in 

groundwater from Arak city. 

3.2.2- Pre-processing of data 

In data-driven system modeling methods, some 

pre-processing steps are usually implemented 

prior to any calculations, to eliminate any 

outliers, missing values or bad data. This step 

confirms that the raw data retrieved from 

database is perfectly proper for modeling. In 

order to softening the training procedure and 

improving the accuracy of prediction, all data 

samples are normalized to adapt to the interval 

[0, 1] according to the following linear mapping 

function (Eq. (10)): 

min

max min

M

x x
x

x x





                                          (10) 

Table 2) Correlation matrix between heavy metals concentrations and independent variables. 

 Cl 4SO 3HCO Ca Mg Na K Fe Mn Pb Zn Cu 

Cl 1.00            

4SO 0.29 1.00           

3HCO -0.07 0.11 1.00          

Ca 0.35 0.56 0.36 1.00         

Mg 0.39 0.04 -0.01 0.19 1.00        

Na 0.49 0.68 0.42 0.39 0.00 1.00       

K 0.31 0.41 0.21 0.24 0.09 0.60 1.00      

Fe 0.05 -0.04 0.02 -0.11 0.03 0.13 0.05 1.00     

Mn -0.05 0.05 0.15 0.06 0.08 0.04 0.09 0.07 1.00    

Pb 0.28 0.85 0.16 0.39 0.05 0.66 0.42 -0.07 0.07 1.00   

Zn -0.03 0.16 0.80 0.36 0.11 0.35 0.19 0.01 0.19 0.19 1.00  

Cu -0.08 0.15 0.74 0.35 0.23 0.28 0.14 -0.01 0.03 0.19 0.87 1.00 

Where x is the original value from the dataset, 

xM is the mapped value, and xmin (xmax) denotes 

the minimum (maximum) raw input values, 

respectively. It is to be noted that model outputs 

will be remapped to their corresponding real 

values by the inverse mapping function ahead of 

calculating any performance criterion. In this 

section, 80% of the datasets (120 samples) were 

assigned for training purposes arbitrary, while 

20% (30 samples) was used for testing the 

network performance. 

3.3- Modeling and performance criteria 

Modeling was done in the statistica10 software. 

The main aim of this study was to build SVM 
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models for the regression problems pertaining to 

the groundwater quality with a view to develop 

a tool for the prediction of heavy metals using 

simple and directly measurable water quality 

parameters as the input. Similar to other 

multivariate calibration methods, the 

generalization performance of SVM regression 

models depends on a proper setting of several 

parameters. These include the capacity 

parameter C, the insensitive loss function ε, and 

the kernel function dependent parameter in 

SVM regression models (Khan and Coulibaly, 

2006). RBF is the most commonly used kernel 

in SVM and the RBF width parameter ( ) 

reflects the distribution/range of x-values of 

training data (Hazi et al., 2010).  The parameter 

C determines the trade-off between the 

smoothness of the regression function and the 

amount up to which deviations larger than ε are 

tolerated. Therefore, the choice of the C value 

influences the significance of the individual data 

points in the training set (Hazi et al., 2010). 

Hence, a proper choice of C in combination 

with ε might result in a well performing and 

robust regression model, which is also 

insensitive to the presence of possible outliers. 

Here, the optimum value of C was determined 

through grid search over a space of 0.01–

50,000.A good combination of the two 

parameters (C and ε) also prevents overtraining. 

To achieve this, an internal cross-validation 

during construction of SVR models was 

performed. The kernel function is used to map 

the input data into a high dimensional feature 

space which is required to transform the 

nonlinear input space to a high-dimensional 

feature space where linear regression is 

possible. The mapping depends on the intrinsic 

structure of the data, implying that the kernel 

type and parameters need be optimized to 

approximate the ideal mapping (Bray and Han, 

2004). In this work, RBF kernel was used. 

Unlike the linear kernel, the RBF kernel can 

handle the case when the relation between 

attributes is nonlinear. It is also worth 

mentioning that the RBF kernel is good in cases 

where the input dimension is low, as it projects 

the data to a higher latent dimensionality. The 

linear kernel is good in situations where the 

input dimension is already high and has many 

null values. Besides, the linear kernel is a 

special case of the RBF. The RBF kernel has 

fewer tuning parameters than the polynomial 

and sigmoid kernels and it tends to give good 

performance under general smoothness 

assumptions (Chen and Yu, 2007). Here, the 

optimum value of the RBF kernel function ( ) 

was determined through the grid search over the 

space 0.001–20. 

To evaluate the performances of the SVR and 

MLR model, root mean squared error (RMSE), 

correlation coefficient (R) and variance account 

for (VAF) were chosen to be the measure of 

accuracy. Let yk be the actual value and be the 

predicted value of the kth observation and n be 

the number of samples. The higher the R and 

VAF the better is the model performance. For 

instance, VAF of 100% means that the 

measured output has been predicted exactly 

(perfect model). It can also mean that the model 

is over fitting. R and VAF =0 means that the 

model performs as poorly as a predictor using 

simply the mean value of the data. Also, the 

lower RMSE indicates the better performance of 

the model. RMSE, R and could be defined, 

respectively, as Eqs. (11)-(12)-(13): 

2

1

1
ˆ( )

n

k k

k

RMSE y y
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Where 
ˆ( )y y  denotes the mean value of the 

ˆ( ), 1,..., ,k k
k n   respectively and var. denotes 

the variance. 

4- Discussion 

The SVR approach was used for predicting the 

heavy metals of groundwater using a set of 

simple and directly measurable water quality 

variables. The complete water quality data set 

was divided in to two sub-sets (training and 

test). In SVR, heavy metals was the dependent 

variable, whereas, the HCO3, SO4 variables 

constituted the set of independent variables. 

Among the linear, polynomial, sigmoid, and 

RBF kernel functions, the later was finally 

selected in SVR models as it yielded the highest 

R. Moreover, the RBF kernels tend to give good 

performance under general smoothness 

assumption (Chen and Yu, 2007; Wei et al., 

2007). The values of the model performance 

criteria parameter (R) as computed for the 

training and test sets used for the model are 

presented in Table 3. For the heavy metal values 

predicted by the model, the correlation 

coefficient (R) values (p < 0.001) for the 

training and test sets were 0.86,0.81 for 

Pb,0.77,0.91 for Zn and 0.68,0.87 for Cu in the 

RBF model respectively. The SVR predictions 

are precise, if R values are closer to unity. 

Table 3) Values of the performance criteria parameter for SVR models 

 Models R 
 

MSE VAF% 

  RBF 0.86  0.123 85 

 Training  Polynomial 0.78 0.168 74 

  Sigmoid 0.38 0.199 42 

Pb  Linear 0.86  0.123 85 

  RBF 0.81 0.158  81 

 Testing  Polynomial 0.77 0.179 73 

  Sigmoid 0.64  0.186 62 

  Linear 0.80  0.144 79 

  RBF 0.77 0.124 73 

 Training  Polynomial 0.76 0.176 72 

Zn  Sigmoid -0.02        0.341 0.03 

  Linear 0.74 0.131 68 

  RBF 0.91   0.121 89 

 Testing Polynomial            0.88                   0.119 87 

  Sigmoid                 -0.22                  0.226 0.24 

  Linear 0.91 0.108 89 

  RBF 0.68   0.198 65 

  Polynomial 0.63 0.182 60 

   Cu Training Sigmoid -0.04 0.321 0.06 

  Linear 0.67 0.191 64 

  RBF 0.87    0.128 86 

 Testing Polynomial 0.83  0.141 75 

  Sigmoid -0.35  0.296 26 

  Linear 0.78 0.168 74 

The performance indices obtained in Table 3 

indicate the high performance of the SVR model 

that can be used successfully for the estimation 

of heavy metals in the groundwater. 

Furthermore, correlation between measured and 

predicted values of heavy metals in the 

groundwater for training and testing phases are 

shown in Figures 4 and 5. In order to increase 

the accuracy and applicability of SVR for 

estimation of heavy metals in groundwater, 
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SVR algorithm was used to weighting SVR. 

Several SVR models were trained and tested 

using obtained data from Arak city, to 

determine the optimum network. Performances 

of the selected SVR model using training and 

testing dataset are shown in Figures 4 and 5 and 

Table 3.  

 

 

Figure 4) Correlation between measured and 

predicted values of heavy metals in the groundwater 

for training data sets, a) Pb, b) Zn, c) Cu. 

The predicted heavy metals fit the measured 

heavy metals almost perfectly for training 

datasets. Nevertheless, the predicted heavy 

metals denote fit perfectly to the measured 

heavy metals for testing datasets. This might be 

caused by a lack of training data in that range. 

In general, it can be said that the proposed SVR 

model is able to predict heavy metals with high 

degree of accuracy. Table 4 compares the 

correlation coefficient R associated with both 

training and test data. 

 

 

 
Figure 5) Correlation between measured and 

predicted values of heavy metals in the groundwater 

for testing data sets, a) Pb, b) Zn, c) Cu.  

Table 4) The comparison of the results (R) of 

training and test data. 

    Pb  Zn      Cu  

 Train Test Train Test Train Test 

RBF 0.86 0.81 0.77 0.91 0.68 0.87 

Polynomial 0.78 0.77 0.76 0.88 0.63 0.83 

Sigmoid 0.38 0.64 -0.02 -

0.22 

-0.04 -

0.35 

Linear 0.86 0.80 0.74 0.91 0.67 0.87 

5- Conclusion 

High concentrations of Pb, Zn and Cu were 

found in the groundwater of Arak City. Heavy 

metals were emitted mainly by anthropogenic 

sources. In this paper, SVM Regression model 

was developed to estimation of heavy metals in 

the groundwater from Arak city, Iran. To 

generate the proposed SVR model, a dataset 

consists of 150 samples was used. Two 

parameters including HCO3, SO4, and (major 

ions) were used as input parameters and Pb, Zn 
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and Cu (heavy metals) were used as output 

parameters. Consequently, it may conclude that 

SVR is a reliable system modeling technique for 

estimation of heavy metals in the groundwater 

from Arak city with highly acceptable degree of 

accuracy and robustness. 
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