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Abstract 

Due to costly and time consuming Basic and detailed exploration stage mineral exploration 

operations and high risk, so Mineral Potential Mapping and modeling using data crucial step in 

reducing the risks and costs of exploration. Various methods for mapping and finding potential of 

promising areas already developed. One of the most effective given the nature of geological 

phenomena is hierarchical. The Analytic Hierarchy Process (AHP) method extensively used for 

studying, comparing and combining various information layers in spatial analysis. Combination of 

Hierarchical method with GIS, provides a highly efficient method to studying of promising areas of 

mineralization. In this hierarchical method and with the help of GIS, data in the form of Zarrin Area 

were analyzed and presented promising areas. 
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1- Introduction 

Mineral exploration aims to discover new 

mineral deposits in a region of interest. One of 

the main steps in mineral exploration is to 

distinguish prospective areas within the region 

of interest (Carranza et al., 1999; Kontos et al., 

2003). On the other hand, since the exploration 

operations in the high-risk public and detailed 

and high cost, so the potential mineral mapping 

modeling and using the available data step in 

controlling risk mitigation and exploration 

costs. Two crucial step in the production and 

marketing potential plans include: Recognize 

factors affecting the reconciliation and the 

selection of an appropriate integration (porwal, 

2006; Kontos et al., 2003). Mineral 

prospectivity mapping (MPM) aims to delineate 

target areas that are most likely to contain 

mineral deposits of a certain type in the region 

of interest (Quadros et al., 2006). 

In order to conduct, MPM is a multi-step 

process of generating evidential maps (i.e., 

extracting and weighting of features indicating 

the presence of the mineral deposit-type 

sought), combining evidential maps, and finally 

ranking promising target areas for further 

exploration (Carranza et al., 2001; Carranza, 

2008; Yousefi et al., 2012; Abedi et al., 2013). 

Various MPM approaches have been developed 

in the last two decades which can be categorized 

generally into data- and knowledge driven ones 

(Carranza, 2008; Carranza et al., 2008). In data 

driven techniques, the information acquired 

from the known mineral deposits are used as 

‗training points‘ to establish spatial relationships 

between the known deposits and particular 

geological, geochemical and geophysical 

features based upon numerous 

statistical/mathematical algorithms (Carranza 

2008). Examples of the data driven methods are 

weights of evidence, logistic regression, neural 

networks and evidential belief functions 

(Carranza and Hale, 2002; Porwal et al., 2003; 
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Quadros et al., 2006; Carranza, 2008). In these 

MPM approaches geoscientist‘s expert 

judgment is applied to weight evidential 

features. Boolean logic, index overlay, 

evidential belief functions, and fuzzy logic 

(Chung and Moon, 1990; Moon, 1990; An et 

al., 1991; Nykänen and Salmirinne, 2007; 

Carranza, 2008; Jung, 2011) are examples of 

knowledge-driven methods. 

The knowledge and data-driven MPM methods 

each have their weaknesses in application. In 

terms of data-driven methods, enough known 

mineral deposits are needed as ‗training points‘ 

to ensure well performance. For the knowledge-

driven methods, the assignment of meaningful 

weights to each evidential layer is a highly 

subjective exercise that usually involves trial 

and error, even in cases where ‗real-expert‘ 

knowledge is available, and particularly when a 

number of different experts are involved 

(Feltrin, 2008; Ishizaka et al., 2013; Du et al., 

2016; Asadi et al., 2016). Nevertheless, the 

analytical hierarchy process (AHP) proposed by 

Saaty (1980, 1994, 1996) can resolve this 

difficulty in evaluating the relative importance 

of each evidential layer, aided by making 

pairwise comparisons (Carranza 2008). In 

addition, this method is straightforward for 

decision-makers (DMs) to use to structure a 

complex problem into a systematic hierarchy 

using the AHP technique (Forman et al. 2001). 

How to measure intangibles is the main concern 

of the mathematics of the AHP. The AHP has 

been mostly applied to multi-objective, multi-

criteria and multiparty decisions because 

decision-making has this diversity (Figueira et 

al., 2005; Hosseinali et al., 2008). In this paper, 

the modeling and integrate geophysical data and 

geology and satellite images with analytical 

methodology Analytical Hierarchy Process 

(hierarchical) or briefly in AHP GIS 

environments for exploration of mineral 

angiogenesis copper at 1:100,000 sheet of 

Zarrin has been used. 

 
Figure 1) Geological map of study area, Modified after (Emami) and (Karimpour) 
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2- Methodology 

AHP approach the issue to systematically 

smaller constituent parts and then guided the 

decision - makers through a series of pairwise 

comparisons about the importance of each of the 

elements in a hierarchical model to judge (Ho et 

al., 2010; Pazand et al., 2011; Bernascon et al., 

2011; Pazand et al., 2014). In order to 

conducting comparisons and hierarchy of 

classification criteria and sub - criterion , after 

the sort of sub-criteria and indicators of the top - 

down of the geometric mean to determine the 

relative value of each of these is using pairwise 

comparisons (Sener, 2004; Jung, 2011). 

In this way to determine the relative importance 

of each parameter compared to other parameters 

of their effectiveness in used it to locate the 

weight of the most important parameter (Saaty 

,1980; Ying et al., 2007; Chen et al., 2008; 

Dambatta et al. 2009; Sener et al., 2010). 

Finally, all of the main parameters weight with 

the help of the AHP method to each of them 

given with the help of the relationship with 

integrated and zoning map obtained (Cheng et 

al., 2007). 

                                 (1) 

S weight of each pixel in output map and Wi of 

ith parameter weight and Sij normalized weight 

class pixel (i. e. the map of the jth class i). 

The pairwise comparisons between the m 

decision factors can be conducted by asking 

questions to experts or decision makers like, 

which criterion is more important with regard to 

the decision goal. The answers to these 

questions form an m×m pairwise comparison 

matrix as follows (Joshi et al. 2011): 

               (2) 

where aij represents a quantified judgment on 

wi/wj with aii=1 and aij= 1/aji for i, j = 1, …, m. 

If the pairwise comparison matrix A = (aij)m×m 

satisfies aij = aikakj for any i, j, k = 1, …, m, then 

A is said to be perfectly consistent; otherwise, it 

is said to be inconsistent. Form the pairwise 

comparison matrix A, the weight vector W can 

be determined by solving the following 

characteristic equation: 

                                                   (3)      

where λmax is the maximum eigenvalue of A 

(Wang et al. 2008; Bernasconi et al. 2011;  Lee 

et al. 2013). The pairwise comparison matrix A 

should have an acceptable consistency, which 

can be checked by the following consistency 

ratio (CR): 

                                   (4) 

If CR≤0.1, the pairwise comparison matrix is 

considered to have an acceptable consistency; 

otherwise, it is required to be revised (Saaty, 

2005; Hsu et al., 2008). Finally, the third step of 

the AHP method computes the entire hierarchic 

weight. In practice, AHP generates an overall 

ranking of the solutions using the comparison 

matrix among the alternatives and the 

information on the ranking of the criteria. The 

alternative with the highest eigenvector value is 

considered to be the first choice (Karamouz et 

al., 2007; Hsu et al., 2008; De Feo et al., 2010; 

Houshyar et al., 2014; Kubler et al., 2014). 

3- Geology and Data 

The studied area within the range between 

45°30´ to 55°00´ the eastern and 32°30´ to 

33°00´ north latitude. That metal potential 

mineral containing copper, which is a major part 

of the mineral copper in the region, has been 

focused on the face veil brigade. In order to 

access the potential of copper Exploration 

research in the area of the geological map 

1:100000, perceptions of the magnetic 

geophysical airborne method and satellite 

images ETM
+
 related to Landsat satellite. 
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Geophysical data, geology and satellite images 

as a GIS layer of information on the 

environment, and with the AHP approach to 

determine the best potential areas of 

reconciliation. 

Geological factors controlling factors in the 

study area can be structural, lithological and 

climatic outlined. Paleozoic formations of 

stones, rocks and Cretaceous granitic rocks, 

highlands region have created. Orogenic activity 

and thereby create faults, thrust, thrusts and 

folding, a significant impact on the structure and 

consequently much of the geological formation 

of the topography of the region (Aghanabati, A, 

2004). 

 
Figure 2) Faulted areas of study area, Modified after (Emami) and (Karimpour). 

 
Figure 3) Airborne geophysical map study area, right: first gradient map to Z , Left: first gradient 

map to Y. 



Journal of Tethys: Vol. 4, No. 4, 335–345                                                                     Farahani and Normohamadi, 2016 

Paleozoic formations dezo, Tashak, Padha and 

shotori containing hard rock such as dolomite 

and sandstone-quartzite have made more 

mountains and peaks or Neogene units due to 

being erodible loose, low hills have formed 

(Fig. 1). Also wind erosion caused formation of 

sandy hills in the center of plain (Wilmsen, M, 

2010). Rock units related to Mineralization, 

fractures and mineral traces were obtained from 

geological map of 1: 100,000 Zarrin Area and 

database were formed (Figs. 1, 2). 

3.1- Airborne geophysical layer 

Airborne geophysical data used by the 

Geological Survey were collected in 1978. 

Flight lines distance is 7.5 km with a sensitivity 

of 0.5 nT were collected by Proton 

magnetometer. After using reduce to pole filter, 

vertical derivative filter using gradients, the 

areas with positive anomalies in the northern 

parts of eastern, central and south-eastern and 

steadily with total field anomaly displayed on 

the screen. The anomalies in shallower areas 

with an in-depth overview map due to the 

impact of the stronger anomalies did not show 

themselves. With this filter to remove anomalies 

have been stronger and weaker anomalies 

appeared (Fig. 3, Aghdam, 2007). 

3.2- Remote sensing layer 

Using ETM+ satellite data of Landsat Satellite 

and processing and interpretation of visual and 

spectral methods to identify geological 

structures and Copper Mineralization related to 

hydrothermal alterations and the preparation of 

new maps. The visual method was considered 

more spatial resolution images and thus creates 

multispectral images Landsat ETM+ PC 

Sharpen combining the pixels with a resolution 

of 15 meters provides space was done 

(Mahdizadeh Tehrani, 1391). Spectral 

processing was used to identify hydrothermal 

alteration (Figs. 4 and 5). 

Spectral angle mapper and Least Square Fit 

methods were applied to ETM+ satellite 

imagery data to map hydrothermal alterations 

and iron oxides. Hydroxyl clay minerals such as 

kaolinite (argillic alteration, phyllic, propylitic) 

and iron oxides were mapped from Landsat 

ETM+ data using the LS-Fit method. 

 
Figure 4) The provided spectral processing map argillic alteration (right) and phyllic alteration 

(left). 
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Figure 5) The provided spectral processing map propylitic alteration (right) and iron oxide 

alteration (left). 

After processing the ETM+ data, argillic, 

phyllic, propylitic, and iron oxide alteration 

were identified. Techniques for determining and 

delineating regions of alteration were obtained 

using Spectral Angle Mapper – SAM (Kruse et 

al., 2003). The spectrum related to each pixel of 

ETM+ imagery is compared with a specific size 

called end-member which is related to 

maximum absorption by the mineral in question. 

In this research, end-members of USGS spectral 

library were used (Clark et al., 2007). 

Considering spectral specifications of other 

altered minerals in ETM+ imagery, it is possible 

to identify hydrothermal alteration regions using 

minerals which are specific to that type of 

alteration. Muscovite is an indicator of phyllic 

zone and kaolinite points to argillic zones. 

Images obtained from SAM method are black 

and white, whose shadow intensity is inversely 

dependent on similarity between end-member 

numbers and spectra related to each specific 

pixel (Gabr et al., 2010; Azizi et al., 2010). 

3.3- Geochemical layer 

Using stream sediment geochemical data in the 

study area to generate geochemical anomalies 

associated with copper mineralization. One 

hundred fifty stream sediment samples were 

collected and analyzed for 9 elements by the 

Geological Survey of Iran. we only used the Cu 

analytical results for mapping stream sediment 

geochemical anomalies for data integration 

modeling. To obtain a raster map of Cu 

anomaly, catchment basins were prepared using 

the locations of stream sediment samples and 

digital elevation model of the area. Then, the Cu 

concentration of each sample is assigned to its 

related catchment basin. Dalli and Zavarian and 

their surrounding areas show strong catchment 

basin Cu anomalies. 

4- Discussion 

At this level recall layers of information 

obtained in the previous step to incorporation 

them and determined metal promising areas in 

the study area. New layers of information at this 

level require the accuracy of raw data used for 

the processing and preparation of this layer. The 

incorporation raster data layers for spatial 

information management system were put into. 

Entrance information layers at this level require 

the accuracy of raw data used for the processing 

and preparation of this layer. At incorporation 

level, information layers as raster were imported 

to spatial information management systems. 
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Prediction of targets when several layers are 

integrated, the areas with greatest value of 

weights are the more important with respect to 

mineral exploration potential for a discovery. 

For each layer some alternatives were defined 

and based on importance of each layer in copper 

exploration the weights were given. Export 

choice software was used for calculating the 

value of each class of a layer concerning value 

of the layer in comparison to other layers with 

AHP method. 

Table 1) Pairwise comparisons of criteria with 

respect to the Copper. 

 Fault Geochemical Alteration Lithology 

Fault 1 2 4 6 

Geochemical 0.5 1 3 5 

Alteration 0.25 0.33 1 4 

Lithology 0.16 0.2 0.25 1 

The resulting relationships are indicated below 

and summarized in Table 1. Faults are slightly 

better than geochemical anomalies (2:1); faults 

are moderately better than alterations (4:1); 

faults are quite better than lithology (6:1); 

geochemical anomalies are little better than 

alterations (3:1); geochemical anomalies are 

better than lithology (5:1); alterations are 

moderately better than lithology (4:1). The 

weight factors are determined in three ways: 

using experts‘ knowledge, using knowledge 

data, and using experts‘ knowledge and 

knowledge data combined (Table 1). The fourth 

stage combines the important coefficient of 

choices, or combination of weights. Computing 

final weights: the final weight of each choice in 

a hierarchical process is achieved through the 

sum of the importance of criteria multiplied by 

the weight of choices. Fifth stage is eigenvalue 

method, which is one method to obtain ultimate 

weights of criteria. The result is a potential map 

for exploration of targets that has an excellent 

correlation with discovered mines and indicators 

of ore (Fig. 6). 

 

Table 2) Borehole classification and AHP results. 

No. 
Quantitative 

class 

Qualitative 

class 

Estimated 

class 

1 1 Week 1 

2 3 Good 3 

3 1 week 3 

4 2 Moderate 2 

5 3 Good 4 

6 2 Moderate 2 

7 4 Very Good 3 

8 3 Good 3 

9 4 Very Good 4 

10 2 Moderate 3 

11 4 Very Good 4 

12 2 Moderate 1 

13 2 Moderate 3 

14 3 Good 2 

15 4 Very Good 3 

16 2 Moderate 2 

17 1 week 1 

18 2 Moderate 1 

19 2 Moderate 2 

20 4 Very Good 4 

21 4 Very Good 3 

22 1 week 1 

23 4 Very Good 3 

24 2 Moderate 2 

25 4 Very Good 4 

26 3 Good 2 

27 2 Moderate 3 

Figure 6 shows the classification of the mineral 

prospectivity area using the AHP for Copper 

Ore Deposit. By considering the other non-

drilled areas, additional borehole drilling will 

not be suggested. The areas belonging to classes 

3 and 4 have potential for further drilling. The 

classifications of mineral prospectivity areas can 

be used to prioritize high-potential zones for 

additional exploratory drilling. In the case 

study, 27 boreholes were classified after 

analyzing the concentration of economically 

viable Cu along them. As shown in Table 2, the 
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areas that belong to classes 3 and 4 can be 

considered suitable candidate zones for detailed 

study, and the remaining areas are excluded 

from further study because they do not have a 

sufficient value to justify the drilling of 

additional boreholes. The weight of the 

misclassification error for each borehole is 

highly dependent on the corresponding 

misclassified classes. For example, the amount 

of error will be higher if a borehole has a class 

of 4 when the actual class is 1, and the error will 

be lower if a borehole is classified as class 2 

when the actual class is 1. If an area is classified 

as class 2, the experts of a prospecting project 

will likely refuse to perform additional drilling, 

but they might continue the project and suggest 

additional borehole drilling in the same zone if 

it is designated as class 4. 

Table 3) Confusion matrix for total boreholes. 

Estimated class 1 2 3 4 

Real class 
    

1 3 0 1 0 

2 2 5 3 0 

3 0 2 2 1 

4 0 0 4 4 

The correct classification rate (CCR) was 

calculated by varying the degree of the 

polynomial. The CCR as a criterion was 

obtained from the confusion matrix by dividing 

the summation of diagonal elements by the total 

boreholes. This matrix function allowed the 

comparison of the four borehole classes. The 

estimated classes and real classes of boreholes 

comprise Table 3, in which the entries are the 

number of classified boreholes. Table 3 shows 

the confusion matrix for the 27 boreholes, in 

which the CCR is 0.575. 

5- Conclusion 

Mapping and modeling promising areas using 

existing data crucial step in reducing 

exploration risk and costs for exploration 

operations in general and detailed process is 

costly and time-consuming. Various methods 

for potential detection and the introduction of 

promising areas already developed. One of the 

most effective given the nature of geological 

phenomena is hierarchical. The Hierarchical 

method extensively used for studying, 

comparing and combining various information 

layers in spatial analysis. Combination of 

Hierarchical method with GIS, provides a 

highly efficient method to studying of 

promising areas of mineralization. In this 

hierarchical method and with the help of GIS, 

data in the form of Zarrin Area were analyzed 

and presented promising areas. 

The results of this study indicated that the 

correct classification rate of the mineral 

prospectivity map based on 27 boreholes drilled 

in the study area is 0.575. The method applied 

classifies the area under study into several 

classes, in which exploration zones are 

prioritized for drillings. The main reason to use 

the analytic hierarchy process is to increase the 

resolution of decision-making related to binary 

classification, which identifies only prospective 

and non-prospective areas. 
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