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Abstract 

Successful modeling of hydro-environmental processes widely relies on quantity and quality of 

accessible data and noisy data might effect on the functioning of the modeling. On the other hand in 

training phase of any Artificial Intelligence (AI) based model, each training data set is usually a 

limited sample of possible patterns of the process and hence, might not show the behavior of whole 

population. Accordingly in the present article first, wavelet-based denoising method was used in 

order to smooth hydrological time series and then small normally distributed noises with the mean 

of zero and various standard deviations were generated and added to the smoothed time series to 

form different denoised-jittered training data sets, for Artificial Neural Network (ANN) modeling 

of monthly rainfall – runoff process of the Pole Saheb(Anyan) station in Zarrineh River watershed, 

which is a portion of orumiyeh lake drainage basin, that is located in Iran. To evaluate the modeling 

performance, the obtained results were compared with those of multi linear regression and Auto 

Regressive Integrated Moving Average models. Comparison of the obtained results via the trained 

ANN using denoised- jittered data showed that the proposed data pre-processing approach could 

improve performance of the ANN based rainfall-runoff modeling of the case study up to 38% in the 

verification phase. 

Keywords: Rainfall-Runoff modeling; ANN; Wavelet denoising; Jittered data; Zarrineh river 

watershed. 

1- Introduction 

Nowadays water resources management is 

vitally important task and optimum planning of 

irrigation projects, development and 

exploitation of water resources especially during 

drought and flood events will be strictly 

dependent to the accuracy of the used rainfall-

runoff modeling tool. Therefore different 

models have been already developed and 

employed for modeling rainfall-runoff process 

of the watersheds. Owing to the large number of 

vague physical parameters in the hydrological 

processes, black box (lumped) models are 

mostly applied, since they may have some 

benefits over fully distributed models (Nourani 

and Mano, 2007). For instance, successful 

hydro-environmental applications of auto 

regressive integrated moving average (ARIMA) 

and multi linear regression (MLR) models have 

been already reported by several researchers 

(e.g. see Wang et al., 2015; Salas et al., 1980; 

Zhang et al., 2011). Although these models are 

linear and may sometimes not be accurate due 

to their incapability to deal with non-stationary 

and non-linearity, they are still applied in 

practice because they can be easily used to 

compare and evaluate the effectiveness of novel 

methods. As such black box models, Artificial 

Neural Network (ANN) has recently indicated 
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great ability for rainfall-runoff modeling (e.g., 

Nourani and Saeidifarzad, 2016; Nourani et al., 

2014; Chau et al., 2015; Abrahart et al., 2012; 

ASCE, 2000). The efficiency of artificial 

intelligence (AI) techniques like ANN may be 

altered if noisy time series and data are used as 

inputs (Sang et al., 2009). Since the 

performance of any data-driven model is 

sensitive to the quality of the used data, 

different methods have been proposed for data 

denoising purpose, e.g. Wiener filter and 

Kalman filter (Wiener, 1949; Kalman, 1960), 

which are appropriate for linear systems but 

sometimes inappropriate for non-linear hydro-

environmental processes. When classic methods 

for modeling hydrological time series do not 

meet the practical needs based on their 

limitations exposing to non-stationary 

characteristics and multi time scales, wavelet 

threshold denoising (WTD) method proposed by 

Donoho (1995) can be used as a reliable 

alternative. In hydrological practices, the WTD 

method is known more influential than 

conventional methods since it can contribute the 

illumination of the localized characteristics of 

non-stationary time series both in temporal and 

frequency domains (Jansen, 2006). There are a 

few studies on the application of wavelet 

denoising in hydrological modeling (e.g. see 

Nourani et al., 2014; Hassannejad and Nourani, 

2012). On the other hand in training phase of an 

AI model, the training data set includes a 

limited sample of all data, so a set of selected 

data could not reflect all possible patterns of the 

process (Zhang, 2007). Jittered data for 

calibration of an AI model can enlarge the 

sample size of training data set by its 

supplementation using extra generated data 

which are similar to, but different from the 

original observed data. This can make it 

possible that the data are appeared more 

smoothly to an AI model and therefore enhance 

the model capability to learn the real patterns 

involved in the process (Zhang, 2007). 

Furthermore, it can prevent over fitting of 

model by supplying extra constraints, and 

imposing the jittered data into the training 

patterns can lead to improvements of the AI 

modeling. Therefore, the jittered data obtained 

by the noise injection method can be a useful 

pre-processing technique for AI-based model 

building (Zhang, 2007; Singh, 2000; Zur et al., 

2004). The selection of a suitable noise size to 

be injected to the original time series to create 

jittering data has not been well described in 

technical literature. Obviously the appropriate 

variance of noise should be a problem reliant as 

distinct time series may have different inherent 

noise levels. Consideration of high levels of 

noise can deform the underlying pattern while 

small noises might not have sufficient influence 

on the jittering performance. 

Most of the researches regarding the application 

of jittering data concentrate on classification 

problems and financial time series analysis and 

there is not any research in hydro-environmental 

modeling. Furthermore the impacts of denoising 

(smoothing) and noise injection (jittering) have 

not been simultaneously investigated neither in 

hydrology nor in any other engineering fields. 

Thus it is necessary to produce more researches 

on this filed and providing suitable solution to 

model hydro-environmental phenomena which 

is addressed in this article. 

2- Material and Methods 

2.1- The proposed hybrid model 

In the proposed method in this study firstly by 

applying wavelet based denoising approach on 

raw data, the outliers and systematic noises of 

the series are identified and shrunk to produce 

smooth hydrological time series. The magnitude 

of the shrinkage is controlled according to a 

threshold value. Then to have several time 

series with similar pattern to the original 

smoothed time series, jittered time series are 

generated by adding normally distributed noise 

time series with specified standard deviations to 

the original smoothed time series of the 

hydrologic parameters. Finally, the produced 

jittered time series are imposed to the ANN 
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forecasting model. In Figure 1, schematic diagram of the proposed method is shown. 

 
Figure 1) Schematic diagram of the proposed model. 

2.1.1- Wavelet denoising procedure 

Wavelet data denoising method based on the 

thresholding to obtain denoised signals has been 

introduced by Donoho (Donoho, 1995). In this 

method, first a signal is decomposed into 

different sub-signals at different resolutions 

through controlling scaling and shifting 

coefficients by the wavelet transform. By this 

way, reliable localization properties which are 

caught in both time and frequency domains can 

be provided. Second a thresholding rule is 

applied on the sub-signals. The basic factors 

that must be respected in this method include: 

selection of a mother wavelet, decomposition 

level, thresholding rule and accurate estimation 

of threshold rule. For a mother wavelet ψ (t), the 

wavelet basis function can be considered as 

follow (Nourani et al., 2014): 

 

In this equation a,b and R indicate respectively 

scale and shift factors and the real number 

domain and  is the successive wavelet. 

The wavelet transform of a signal f (t)  L
2
(R) 

can be written as (Nourani et al., 2014): 

 

Which  is complex conjugate of (t). As it 

is clear from equation (2), the wavelet transform 

of a time series like f(t) decomposes it under 

various resolution levels. By applying 

successive wavelet transform, the main signal of 

f(t) is reconstructed using inverse transform 

using the wavelet coefficients of wf (a,b), as 

(Sang et al., 2009): 

 

Which  denotes to the Fourier transform 

of . 

The wavelet based thresholding technique as a 

widely used data denoising approach is 

conducted through three steps as (Donoho, 

1995): 

a) First a proper mother wavelet and a 

reasonable resolution level of N are chosen for 

the specified period of the study process to 

decompose the main time series to an 

approximation sub-series at level N and N 

detailed sub-series via wavelet transform. 

b) In the second step, the absolute values of the 

detailed sub-series in resolution level of i di(t) (  

= 1, 2,..., N) which are less than a specified 

threshold of  , will be changed to zero, but if 

the values of detailed sub-series at the same 

resolution level exceed this specified threshold, 

their difference with the threshold value are 

considered as the modified values of detailed 

sub-series. Which this thresholding procedure 

can be mathematically shown by (Donoho, 

1995): 

 

Where i refers to i th resolution level. Equation 

4 applies the thresholding at all resolution levels 

on detailed sub-series, but the approximation 

sub-series is not included in this thresholding 

procedure. 

Donoho and Johnstone (1995) proposed a 

formula to determine a general optimal 
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threshold value for signals which are included 

white Gaussian noises as (Donoho and 

Johnstone, 1995): 

 

Where the number of samples in the noisy 

signal is n and  is the standard deviation of 

noises which may be obtained as (Donoho and 

Johnstone, 1995): 

 

Therefore, the  represent detailed wavelet 

coefficient of main time series of first level. 

c) At the third step, the denoised (smoothed) 

sub-series can be reconstructed by modified 

detailed sub-series at all resolution levels and 

approximation sub-series at resolution level N 

through the inverse wavelet transform (Eq. 3). 

2.1.2- Jittered data generation 

Generating random data usually consists of two 

steps. First, random data with uniform 

distribution are generated thereafter, these 

random numbers with uniform distribution are 

used to produce random numbers with arbitrary 

distribution. After generating random numbers 

with uniform distribution, some of methods e.g. 

reverse conversion method could be used in 

order to generate random numbers with 

arbitrary distribution. In this approach whenever 

x random variable has cumulative distribution, 

in this case u=F( ) has uniform distribution of 

u(0,1) and vice versa if u~u(0,1), in this 

case,  ) has an F cumulative 

distribution function and if  has F distribution, 

for generating  random variable with G 

distribution function we will have (Bowker and 

Lieberman, 1972): 

             

Random numbers based on different 

distributions could be generated by software. In 

this study NORMRND toolbox of MATLAB, 

was used to produce normally distributed 

random time series of jittered noises with mean 

of zero and several small standard deviations 

consistent with the original time series of the 

hydrological parameters. 

2.1.3- Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are widely 

used for modeling and prediction of hydro- 

environmental processes. In this regard, feed 

forward ANN trained by the back-propagation 

algorithm including one input, one hidden and 

one output layers are more suitable option in 

compared to other ANN types in most 

engineering disciplines (ASCE, 2000; Hornik, 

1988). This network has great ability to learn 

involved patterns within non-linear systems 

through only three layers. Neurons (nodes) in 

each layer are connected to all nodes in previous 

layer. Due to the feed forward framework, the 

path of signals is in forward direction and the 

outputs of input layer, create the input vector for 

hidden layer and similarly the outputs of the 

hidden layer make inputs for the output layer. 

The output value of a feed forward neural 

network with three layers can be obtained 

through the following equation (Kim and 

Valdes, 2003): 

 

Where Eq. 8 applies weight of Gji on a node in 

hidden layer which connects i th node of the 

input layer to the j th node of the hidden layer 

and bias of Gjo on the j th hidden node. fh is the 

activation function for all nodes of hidden layer, 

weight Gkj is applied on the output layer to the 

path where connects the j th node in hidden 

layer to the k th node of the output layer, G k 0 is 

the bias of the k th output node, f0 is the 

activation function for the output node, xi 

denotes to the input value of i th node in input 

layer and , y show respectively calculated  

and observed values for target (output) node. 

Finally, NN and MN indicate respectively the 

number of input and hidden layers
,
 nodes. The 

different bias and weights applied on the nodes 

of hidden and output layers are tuned through 

the calibration phase of modeling. 

 

 

2- Study area 
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The data used in this paper are from Pole Saheb 

(Anyan) station in Jighatu River Watershed that 

is a sub basin of Zarrineh River watershed, 

which is a portion of orumiyeh lake drainage 

basin, that is located in Iran (Latitude 36°12', 

Longitude 46°26') (Figure2). The monthly mean 

and maximum runoff are 18.08 m
3
/s and 213 

m
3
/s, respectively in the study duration. The 

monthly runoff data for 21 years (from 1992 to 

2012, 252 months) were used in this research. 

The statistical parameters of the monthly 

average rainfall and runoff data such as the 

mean, standard deviation, maximum and 

minimum values (i.e., Xmean, Sd, Xmax and 

Xmin, respectively) are given in Table 1. Due to 

the training and verification goals, data set was 

divided into two parts. The first division as 70% 

of total data included the training set and the 

rest 30% data set was used for the verification 

purpose. 

 

Figure 2) Jighatu River Watershed. 

Table 1) Statistics of time series for calibration, verification and all data. 

Statistical 

parameters 

 

           All Data 

 

        Training Data 

 

      Verifying Data 

 Runoff 

(m
3
/S) 

Rainfall 

(mm) 

Runoff 

(m
3
/S) 

Rainfall 

(mm) 

Runoff 

(m
3
/S) 

Rainfall 

(mm) 

Xmean 18.08 1.012 19.55 1.094 17.44 0.822 
Xmax 213 7.033 213 7.033 150.68 3.6 
Xmin 0 0 0 0 0 0 
Sd 31.49 1.168 37.95 1.25 27.93 0.926 

2-3- Efficiency criteria 

The model that yields the best results in terms of 

coefficient of determination ( DC) as equation 

(9) and root mean square error (RMSE) as 

equation (10) in the training and verifying steps 

can be determined through trial and error 

process (Nourani et al., 2009). 

 

 

 

Where DC, RMSE, n, Oobsi , Ocomi  and  are 

determination coefficient, root mean squared 

error, number of observations, observed data, 

computed values and mean of observed data, 

respectively. Clearly small value for RMSE and 

high value for DC (up to one) show high 

efficiency of the model. The generated noise 
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time series may include negative quantities, 

therefore in order to prevent the producing of 

negative hydrological data , in this study the 

input and target data were normalized to scale 

the data between 0.1 and 0.9 by the equation 

(11) (Rajurkar et al., 2002): 

 

Regarding the equation (11), xi is the desired 

variable value, xmin and xmax are the minimum 

and maximum values, respectively. Ni is the 

normalized variable. 

3- Results And Discussion 

At first, the multi-layer perceptron (MLP) feed 

forward ANN model without any data pre-

processing were used to model the watershed 

monthly rainfall-runoff process. This kind of 

ANN model accompanied by back propagation 

training algorithm is widely used in hydrologic 

modeling (ASCE, 2000). Each MLP was trained 

with 2 to 10 hidden neurons in a single hidden 

layer and scheme of the Levenberg–Marquardt 

back propagation was used as the training 

algorithm. No great improvement in model 

performance was found when the number of 

hidden neurons was increased from a threshold, 

which is similar to the outcome reported by 

several researchers (Abrahart and See, 2000; 

Danandeh Mehr et al., 2015). In this study, five 

combinations of input data for runoff prediction 

were consumed as: 

Comb.  1: Rt, Qt-12, Qt 

Comb.  2: Rt, Qt-12, Qt-1, Qt 

Comb.  3: Rt, Rt-1, Qt-12, Qt-1,Qt 

Comb.  4: Rt, Qt-12,Qt-2, Qt-1,Qt 

Comb.  5: Rt-1, Rt, Qt-12, Qt-2, Qt-1, Qt 

In all cases the output was the discharge at the 

next time step Qt+1 where Rt presents rainfall 

value at time step t. In order to get appropriate 

1-month-ahead prediction of Q, the input layer 

should be arranged in a way that could enjoy all 

pertinent information on the target data. Based 

on sensitivity analysis, the input layer was 

optimized with only the most important time 

memories. In this regard, in all combinations Qt-

12 was considered as model input for predictions. 

The results of ANN model with noisy data are 

shown in Table 2. 

Table- 2. Results and structures of ANN model for the different input combinations 

Based on the efficiency criteria, it is clear that 

input Comb no. 2 could lead to better 

performance in ANN modeling and thereafter 

used for ANN modeling. 

In the next step of modeling, in order to 

eliminate the outliers and systematic large 

noises of the observed data, wavelet-based 

denoising approach was applied on raw data. 

Since the type of used mother wavelet and 

decomposition level can alter denoising 

performance, wavelet denoising was performed 

and compared using Daubechies mother 

wavelets (Haar or Db1, Db2, Db3  and  Db4) at 

three different resolution levels of 3,4 and 5 

(Walker, 1999). The reason of choosing these 

three resolution levels is that one year includes 

12 months performed between two modes of 23 

Input variables  

(rainfall and runoff) 

Network 

Structure 

RMSE 

(normalized) 

DC 

 

Calibration Verification Calibration Verification 

Comb.1 (3-5-1) 0.072 0.108 0.522 0.421 

Comb.2 (4-6-1) 0.058 0.095 0.685 0.556 

Comb.3 (5-3-1) 0.066 0.103 0.593 0.475 

Comb.4 (5-3-1) 0.061 0.099 0.652 0.519 

Comb.5 (6-3-1) 0.066 0.108 0.601 0.427 
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and 24, therefore these three possibilities focus 

on annual period intensity. The denoising 

procedure of hydrological time series was 

performed using different mother wavelets and 

decomposition levels of 3, 4 and 5 and specified 

threshold obtained through equation 5, then the 

models were trained using such smoothed input 

combination set determined in sensitivity 

analysis step (Comb. 2). The results of ANN 

modeling using denoised input data have been 

summarized in Table 3. As it can be seen in 

Table 3, the obtained results indicate 

improvement of about 25% in ANN modeling in 

verification phase when using smooth time 

series as inputs. The results show that Db4 

mother wavelet could lead to reliable results 

according to level of removed noise and to 

similarity of mother wavelet shape with main 

time series formation. 

 

Table 3) Results and structures of ANN modeling using denoised data (using Comb.2). 

 

In the third step of modeling, several jittered 

input time series with similar pattern to the 

original time series were produced by adding 

normally distributed generated noises with zero 

mean and different standard deviations to the 

smoothed time series of the hydrologic 

parameters (obtained in second step of 

modeling). In this manner the time series would 

have unique and similar trend (approximation) 

to the original time series but with different 

stochastic terms represented by the added small 

generated noises. Therefore via the training 

phase of AI modeling, the AI model (ANN in 

this study) could see and learn different 

stochastic situations of process which in turn 

this could enhance the performance of modeling 

in the verification step (for the unseen data). For 

this purpose, normally distributed noise time 

series with mean of zero and standard deviations 

of 0.0001, 0.001, 0.003, 0.005 and 0.01 

(normalized value) were generated and injected 

to the smoothed hydrological time series 

(obtained in second step of modeling) and the 

ANN modeling was performed by these jittered 

input time series. In this stage, according to the 

best input combination set (with appropriate 

lag) determined in the first step of modeling, the 

input combinations in ANN modeling were 

considered as: 

Comb.  1: Rt , Q'1t, , Qt-12D, Qt-1D,QtD 

Comb.  2: Rt , Q'2t, Q'1t, Qt-12D, Qt-1D,QtD 

Comb.  3: Rt ,Q'3t ,Q'2t, Q'1t, Qt-12D, Qt-1D,QtD 

Comb.  4: Rt, Q'4t ,Q'3t ,Q'2t, Q'1t, Qt-12D, Qt-1D,QtD 

Where, QtD represents value of smooth time 

series at time step t, and Q't indicates the 

denoised-jittered time series.The indexes 1,2,3 

and 4 indicate different generated noise ( with 

same standard deviation ) added to smoothed 

time series at time step t. For instance, the 

original (Qt) and three samples of jittred time 

series generated by noises with standard 

deviation of 0.01(Q'1, Q'2  and Q'3) are depicted 

in Figure 3. The obtained results of modeling 

are shown in Table 4. It should be noticed that 

for each of noise time series with a specified 

standard deviation, different time series(up to 

four) were generated and different combinations 

(Comb.,1,2,3,4) were produced but only the 

results of the input combination which lead to 

best results have been presented in the Table. 

 

Mother 

Wavelet 

Decomposition 

Level 

Threshold 

(Normalized) 

Network 

Structure 

RMSE 

(normalized) 

DC 

 

Calibration Verification Calibration Verification 

Haar 5 0.175 4-5-1 0.062 0.087 0.648 0.626 

Db2 4 0.175 4-9-1 0.059 0.087 0.678 0.625 

Db3 4 0.175 4-6-1 0.057 0.084 0.698 0.652 

Db4 4 0.175 4-4-1 0.055 0.078 0.722 0.697 
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Table 4) Results of ANN model using the denoised-jittered data. 

Standard 

deviation of 

noise 

Input 

structure 

Network 

Structure 

RMSE 

(normalized) 

DC 

 

Calibration Verification Calibration Verification 

0.0001 Comb. 2 6-4-1 0.046 0.076 0.807 0.716 

0.001 Comb. 1 5-7-1 0.041 0.069 0.844 0.766 

0.003 Comb. 2 6-3-1 0.051 0.071 0.758 0.752 

0.005 Comb. 4 8-3-1 0.048 0.074 0.781 0.725 

0.01 Comb. 2 6-4-1 0.052 0.078 0.750 0.697 

Based on the efficiency criteria, it is clear that 

input Comb. (1) could lead to better 

performance in modeling, including generated 

noise with standard deviation 0f 0.001, so that 

the proposed methodology, in comparison to the 

situation in which the modeling was done by 

un-preprocessed data, indicates an improvement 

of 38 percent in testing phase. The scatter plot 

of optimum ANN model in training and 

verification phase are shown in Figures (4) and 

(5). 

 
Figure 3) The original and three samples of generated jittred time series with noise standard 

deviation of 0.01. 
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Figure 4) The scatter plot of ANN results in training 

phase. 

 

Figure 5) The scatter plot of ANN results in testing 

phase. 

In order to evaluate the ability of proposed 

modeling, some comparisons with classic linear 

models of ARIMA (Salas et al., 1980) and MLR 

(Snedecor, 1981) were also conducted in 

modeling the watershed rainfall–runoff process. 

ARIMA and MLR modeling have been done by 

denoised-jittered time series as well. The 

comparison results are presented in Table 5. 

The results indicate poor outcomes of ARIMA 

and MLR models with regard to the proposed 

model. This is due to the limited ability of linear 

models in modeling non-linearity and non-

stationary time series and on the other hand, 

high dependence of data-driven models to 

quantity and quality of the used data. 

Table 5) Comparison of different rainfall–runoff 

modeling approaches. 

Model 

RMSE 

(normalized) 

DC 

 

Calibration Verification Calibration Verification 

ARIMA 0.057 0.088 0.699 0.612 

MLR 0.061 0.093 0.673 0.571 

ANN 0.041 0.069 0.844 0.766 

4- Conclusions 

In this study via data pre-processing techniques, 

the input of wavelet-based denoised-jittered data 

was employed in AI-based rainfall-runoff 

modeling. Accordingly, first it was tried to 

smooth the hydrological time series by 

eliminating the outliers and large noises of raw 

observed time series, which may be due to 

human or tool measurement error or systematic 

error. Then different training time series were 

generated by noise injection to the smoothed 

time series, and uesd to train ANN model for 

monthly rainfall-runoff modeling. The 

comparison of obtained results using processed 

and unprocessed data, indicates the merit of 

applied data pre-processing approaches due to 

robust identification of hidden patterns in data, 

so that the developed models could simulate and 

predict runoff values with lower margin of error 

and higher confidence and the best results were 

achieved by employing the denoised-jittered 

data via producing more different training time 

series with the same pattern of original time 

series. 

For future study, it is recommended to examine 

the efficiency of the proposed data-pre-

processing method in rainfall-runoff modeling 

of other watersheds. Since it is expected that the 

merit of the method is more highlighted where 

the quality of the gathered data is due to the 

technical limitations, then it is worth to examine 

the performance of the proposed data pre-

processing linked to other data driven methods. 

Furthermore, it is suggested to evaluate the 

efficiency of the proposed method in modeling 

the process at other time scales and also for 

292 
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modeling other hydrological processes which 

may involve distinct noise level and pattern 

regarding to the type of process. 
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