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Abstract 

The rapid change of land use and land cover in the Metropolitan area of Tehran has influenced the 

distribution pattern of land surface temperature (LST). In this study, a spatial autocorrelation 

analysis is adopted to process the spatial-temporal changes of LST and Normalized Difference 

Vegetation Index (NDVI) in Tehran during the period of 1987 to 2010. Global spatial 

autocorrelation analysis revealed that global Moran’s I of LST has increased while that of NDVI 

has decreased with time. While the newly hot clusters of LST were appeared in west and southwest 

of Tehran, the spatial extents of the old hot clusters have been increased. The Local Indicators of 

Spatial Association (LISA) analysis confirmed the intensifying and expansion of the hot clusters 

and weakening of the cold clusters of LST. The spatial pattern of LST and UHI expanded toward 

west and southwest of Tehran and UHI effect was intensified. Based on LISA analysis, the 

occurrence of increasing trend of HH cluster of LST is related to the decrease of HH cluster of 

NDVI in Tehran. Accompanying with decreasing of vegetation cover, green cover cooling effect 

also decreased, and consequently, UHI effect was intensified from 1987 to 2010. The results 

demonstrate the usefulness of spatial autocorrelation technique for analysis of spatial-temporal 

changes of UHI and green cover in urban areas. Ordinary Least Squares regression (OLS) and 

Geographically Weighted Regression (GWR) were used to investigate the relationships between 

LST and NDVI. The results indicate that the performance of the GWR model is significantly better 

than OLS. 

Keywords: Urban heat island; Green cover; Spatial-temporal changes of temperature; The global 

and local spatial autocorrelation; The geographically weighted regression. 

1- Introduction 

Urbanization changes the land cover types in 

urban areas and results in distinguished climatic 

conditions termed the ―Urban climate‖. Urban 

climates are distinguished from surrounding 

rural climates by differences of air temperature, 

humidity, wind speed and direction and amount 

of precipitation (Rose and Devadas, 2009). 

Urbanization modifications generally lead to a 

thermal climate that is warmer than the 

surrounding non-urban areas. This phenomenon 

is called the urban heat island (UHI) (Vooget 

and Oke, 2003). The UHI effect results in a 

climate of about 3.5-4.5°C warmer than 

surrounding rural areas and is expected to 

increase by approximately 1°C per decade. The 

temperature differences between urban and 

surrounding rural areas can reach up to 10° C 

for large urban agglomerations (Voogt, 2002).  
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Adaptation to rising temperatures by increasing 

air condition can also further increase UHI 

effects. For instance, massive air conditioning 

has been shown to increase UHI effects up to 

1°C (Hallegatte et al., 2008). There is also 

recent evidence that local precipitation rates 

may be affected by urbanization. For example, 

the analysis of precipitation in Phoenix, 

Arizona, showed that the post-urbanization 

precipitation is significantly higher than the pre-

urbanization amount (Ruth and Gasper, 2008). 

The traditional method for studying UHI effect 

has long been based on the observed 

temperature at the meteorological stations or 

thermometers boarded on moving vehicles 

(Streutker, 2002; Weng, 2004), which might not 

fully represent the areal variations of urban 

temperatures due to their scarcity and uneven 

distribution. But since the 1960s, Remote 

Sensing technology has been widely used to 

measure land surface temperature (LST) (Liu 

and Zhang, 2011) with a very higher spatial 

resolution compared to the traditional method. 

At the beginning, UHI was studied with NOAA 

AVHRR thermal data (Balling and Brazell 

1988; Gallo et al. 1993; Gallo and Owen 1988; 

Streutker 2002) but later, the utilization of 

thermal infrared data of TM, ETM + and 

ASTER improved the precision of the studies 

(Weng 2001; Weng et al. 2006; Amiri et al. 

2009; Flahatlar et al. 2011). For example, Amiri 

et al. (2009) explored spatial–temporal 

dynamics of land surface temperature in relation 

to fractional vegetation cover and land 

use/cover in Tabriz urban area, Iran. They used 

multi-temporal images of Landsat 4, 5 TM and 

7 ETM+ sensors to examine the relationship 

between LST and land use/cover (LULC).  Most 

of the studies found that the multi-temporal 

satellite data are very effective in studying 

urban vegetation and temperature changes (Dai 

et al., 2010; Mo et al., 2011; Xu et al., 2011). 

According to some studies (Xu  2004; Zhang et 

al., 2007; Du et al., 2009; Sun et al., 2010; Xu 

et al., 2011; Chen et al., 2002; Li et al., 2009; 

Dai et al., 2010) the UHI effect is increasing 

through the time. For instance, Zhang et al. 

(2007) analyzed the areal extension of UHI in 

the estuarine area of Pearl River (China) from 

1990 to 2000 by Landsat TM/ETM+ data and 

indicated that the area has increased about 250 

square kilometers during the study period. Li et 

al. (2009) used the integrated GIS/RS approach 

and spatial analysis methods such as spatial 

autocorrelation, semivariance, and fractal 

analysis to demonstrate the increasing trend of 

the magnitude and spatial extent of UHI in the 

Shanghai metropolitan area during the 1997-

2004. 

The urban area of Tehran (Fig. 1), with more 

than 8 million populations is located on the 

southern foothills of Alborz Mountains at an 

average elevation of 1600 meters. Due to rapid 

immigration of population, increasing energy 

consumption and resultant changes in land use 

and land cover, uncontrolled urbanization and 

industrialization have led to an overall 

environmental degradation in this region. Large 

scale urban constructions and industrial 

enterprises increased the city heat capacity and 

temperature, resulting in high temperature 

difference between urban and surrounding areas 

and thus more effective UHI. Some researchers 

(Akbari, 2000; Jangi, 2004; Namdari, 2009) 

have studied the UHI in Tehran. For example 

based on the land use/cover interpretation of a 

LANDSAT image of August 9, 2002, Namdeari 

(2009) has stated that the highest temperatures 

were shown in the areas of most populated, 

transportation terminals and airport, and in 

barren lands. The main point is that none of the 

previous researches have given a comprehensive 

image and understanding of the temperature 

variation of Tehran and the UHI. For this 

reason, the main objective of this research is to 

study the spatial and temporal changes of UHI 

in Tehran urban area in relation to changes of 

green cover. 

2- Materials and Methods 
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To explore the spatial-temporal changes of 

urban thermal environment of Tehran, the first 

LST is retrieved from multi- temporal Landsat 

TM thermal channel data (2 images) by using 

mono-window algorithm. Then, Normalized 

Difference Vegetation Index (NDVI) was 

computed for all images from visible (0.63–0.69 

mm) and near-infrared (0.76–0.90 mm) data of 

the Landsat TM. Based on the data, global and 

local spatial autocorrelation analysis was 

adopted to reveal the characteristics of spatial 

heterogeneity and temporal change of LST and 

NDVI at different scales and periods. Finally, 

Ordinary Least Squares regression (OLS) and 

Geographically Weighted Regression (GWR) 

were used to investigate the relationship 

between LST and NDVI. More details about the 

data and the analysis are described in the 

following sections. 

2.1- Image and pre-processing 

This research used Landsat TM5 (launched in 

1984) 10.4-12.5 μm thermal band data with a 

spatial resolution of 120 m. Two scenes of 

Landsat TM image for days 23 July 1987 and 22 

July 2010, were acquired. The data source was 

the USGS, which had corrected the radiometric 

and geometrical distortions. The TM image was 

rectified to UTM coordinate system, and was 

resampled using the nearest neighbor algorithm 

with a pixel size of 30 by 30 m for all bands. 

The resultant RMSE was found to be less than 

0.5 pixels. From the available TM data, two 

scenes without visible clouds in the area of 

interest were selected for further processing and 

LST calculations. Furthermore, the NDVI was 

calculated from the Landsat bands 3 (RED) and 

4 (NIR) of the same scenes. To gain the final 

images of LST and NDVI in Tehran city, the 

resultant images were clipped based on urban 

area boundary file. The air temperature and 

moisture data were obtained from four weather 

stations (Mehrabad, Chitgar, Geophysique, 

Dooshantappeh and Aghdasieh) as an auxiliary 

data to use for retrieving LST from the thermal 

remote sensing images. The data pre-processing 

and other analyses were performed using 

ERDAS Imagine 9.2 and ArcGIS 10 software. 
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Figure 1) The study area (The Metropolitan of Tehran). The most effective land-use types for the 

establishment of UHI are presented on the map by their initials. The numbers represent the 22 districts of 

Tehran. 

2.2- Retrieving land surface temperature 

The thermal band data of Landsat TM (TM6) is 

highly suitable for analyzing the spatial patterns 

of the Earth’s heat flux variation and surface 

temperature. In this study, the mono-window 

algorithm is used for Landsat TM 6. In 2001, 

Qin et al. proposed the mono-window algorithm 

(Figure 3) for retrieving LST from Landsat TM 

6 data (Qin et al, 2001). Based on thermal 

radiance transfer equation, the mono-window 

algorithm only requires three parameters—

emissivity, transmittance and effective mean 

atmospheric temperature— to retrieve LST from 

Landsat TM 6 through the following steps: 

1) Converting the digital number (DN) into 

brightness temperature: The digital 

numbers (DN) of band 6 were converted 

to a sensor radiance using equation (1) 

(Chander and Markham, 2003): 

,   [
(         )

(               )
]         -               (1) 

where Lmin and Lmax are spectral radiance for 

band 6 at DN 0 and DN 255 respectively; 

Qcal=DN, Qcalmin=0 , Qcalmax=255. 

The above spectral radiance values from the TM 

thermal band were transformed to brightness 

temperature according to equation (2): 

,    
  

{  [
  
  
  ]}

-                                               (2) 

Where, T6 is at-satellite brightness temperature 

in kelvin; K1 and K2 are pre-launch calibration 

constants. For TM images, K1=607.76 

W/m
2
/sr/um, K2=1260.56K. Lλ:Spectral 

radiance in (W/m2/sr/um). 

2) Calculation of land surface emissivity: 

The emissivity can be estimated by 

utilizing NDVI (Van De Griend and 

Owe. 2003) (Table 1). In order to 

calculate the NDVI, Equation (3) can be 

used as: 

,     
     

     
                                                  (3) 

Then, a complete land surface emissivity 

estimation method proposed by Zhang et al. 

(2006) was utilized to calculate emissivity for 

each pixel. 

Table 1) Estimation of emissivity by using NDVI 

(Zhang et al., 2006). 

 

3) Calculation of atmospheric 

transmittance: Actually, the atmospheric 

transmittance can be estimated by using 

water vapor (Liu and Zhang, 2010). In 

order to calculate the water vapor, 

Equation 4 is used (Li et al., 2006). 

,          {             [
      (         )

      (         )
]  

  }        -                                                      (4) 

Where, wi is the water vapor content (g/cm
2
); T

0
 

is the near-surface air temperature in K; and RH 

represents the relative humidity. The data for 

water vapor content, near-surface air 

temperature and relative humidity of Tehran 

meteorological stations were used for the same 

dates Landsat TM images (date 23 July 1987 

and 22 July 2010). Then, Equations of Table 2 

were applied to calculate the atmospheric 

transmittance of Landsat TM 6 (Qin et al., 

2001). 

Table 2) Estimation of atmospheric transmittance 

(Qin et al., 2001). 
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In this table, τi is the atmospheric transmittance 

of Landsat TM 6 and w represents the water 

vapor content which was calculated using 

Equation (4). 

4) The atmospheric effective mean 

temperature was calculated using the 

equation (5), because it is adequate 

according to the location of Tehran in 

summer (Qin et al., 2001). 

[Ta = 16.0110 + 0.92621 × To]                           (5) 

Where, To is the near-surface air temperature in 

K. 

5) Final retrieving of LST: After the 

calculation of the values of the three 

variables of emissivity, transmittance 

and effective mean atmospheric 

temperature, the mono-window 

algorithm was processed: 

,   * (     ), (     )     -      +  - (6) 

          ,    (    ),  (  )    - 

Where Ts is the LST (k), two constants (a and b) 

are 67.355351 and 0.458606, respectively. Ti is 

the at-sensor brightness temperature (k), Ta 

represents the effective mean atmospheric 

temperature that is calculated using equation 

(5). The εi is the emissivity, which is classified 

and computed by NDVI (Table 1), τi is the 

transmittance given in the Table 2. 

2.3- Detection of spatial and temporal 

changes of LST and Vegetation cover 

The spatial autocorrelation provides information 

on the spatial structure of the variables, which is 

a powerful approach for the analysis of spatial 

patterning in geography, and such methods have 

been successfully applied in climatological 

researches (Li et al. 2009; Su et al. 2011; Dai et 

al. 2010). Moran’s I index is the most used 

index to assess the global level of spatial 

autocorrelation (Anselin, 1995). Given a set of 

features and an associated attribute, global 

spatial autocorrelation analysis evaluates 

whether the pattern is clustered, dispersed, or 

random; the local spatial autocorrelation 

analysis determines the location and intensity of 

the clustered pattern. In this study, global and 

local spatial autocorrelations were used to 

quantify the spatial and temporal changes of 

LST and NDVI (green cover) in Tehran area 

from 1987 to 2010. The Moran’s Global I 

statistic was used to measure the global spatial 

autocorrelation of the LST and NDVI data (Dai 

et al., 2010): 

,  
 

  
 
∑ ∑    (    ̅)(    ̅)

 
   

 
   

∑ (    ̅) 
  

   

-                             (7) 

where, N is the total number of cells, Xi and Xj 

are the values of the observed variable at cells i 

and j,  ̅  is the mean of all Xi and Xj ,  ̅  
 

 
∑   
 
    ,    ∑ ∑    

 
   

 
   , Wij, the weights 

representing proximity relationships between 

cell i and j, indicating the influence extent of 

spatial structure dependence, and determined 

according to adjacent relationship in this paper. 

Usually, the Moran’s I should be standardized 

to z for judging the positive or negative 

correlation and statistical test of results. In 

general, the value of Moran’s I vary between -

1.0 and +1.0. A higher positive I implies that the 

values in neighboring sites tend to cluster 

together. Whereas a lower negative I implies 

that high and low values are interspersed. 

Moreover, the value of I near zero reveals that 

the data are randomly distributed without spatial 

autocorrelation (Cliff and Ord, 1981; Legendre 

and Legendre, 1998).  

The Global Moran’s I only indicates overall 

clustering extent but cannot be used to detect 

spatial association pattern in different locations 

(Dai et al., 2010). To further reveal the spatial 

autocorrelation of LST (NDVI) in the 
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neighborhoods and visualize the spatial pattern 

of local differences, the Local Indicators of 

Spatial Association (LISA) were used. LISA 

analysis include Local Moran’s I and Local 

Geary’s C. The local Moran’s I is used to 

evaluate the local spatial association and 

difference between each cell and its surrounding 

cells. Local Moran’s I is the disintegration form 

of Global Moran’s I. For a given spatial cell i, 

the value of Local Moran’s I is computed as 

(Anselin, 1995): 

,     ∑      
 
       -                                       (8) 

Where, N is the number of cells, Xi and Xj are 

the standardized observed value of cell i and j, 

and Wij is the standardized spatial weighting 

value (∑jwij =1). Similar to the significance test 

of Global Moran’s I, the results of the Local 

Moran’s I can be tested by means of Z-Score. 

Given a certain significance level, if the Ii value 

is significantly positive, then the cell Ii has 

value similar to neighboring cells’ values, and a 

spatial cluster of similar LST (NDVI) values 

surrounds the cell i, meaning a spatial positive 

correlation. A high positive Ii value 

demonstrates a strong clustering extent. On the 

other hand, if the Ii value is significantly 

negative, then the cell Ii has a very different 

LST (NDVI) value than its neighbors, indicating 

a spatial negative correlation. With the local 

Moran’s I statistics analysis, three types of local 

spatial autocorrelation were distinguished. The 

clustered type occurs when high values 

surrounded by high values (High-high), or low 

values surrounded by low values (Low-low). 

The pattern is dispersed, if high values 

surrounded by low values (High-low) and low 

values surrounded by high values (Low-high). 

The third type is the spatial randomness with no 

distinguished spatial behavior (Huo et al., 

2012). Among these spatial patterns, HHs are 

called hot spots and LLs are called cold spots. 

According to the spatial distribution of HHs and 

LLs, the location and spatial variation of urban 

heat island and urban cold spots were defined, 

respectively. Their temporal variations were 

achieved by studying their annual frequencies 

through the study period. 

2.4- Statistical analysis of the LST-NDVI 

relationship 

The Ordinary Least Square regression (OLS) 

and Geographically Weighted Regression 

(GWR) models were used to investigate the 

relationships between LST and NDVI. OLS is 

well known and has been used in the past, but 

due to the lack of space factor, does not give 

higher accuracy. As a global spatial model, the 

OLS does not have a satisfactory estimating 

power for the relationship between dependent 

and explanatory variables. But the GWR model 

allows the regression coefficient to take 

different values for each prediction point. In 

other words, the regression coefficients are not 

constant over the geographical space (Bostan et 

al., 2012). Thus the GWR technique extends the 

conventional global regression by adding a 

geographical location parameter, and is written 

as (Gao et al., 2012): 

,     (     )  ∑   (     )
 
                 -   (9) 

Where,    is the observed value of the 

dependent variable at location i,     is the 

observation of the explanatory variable at 

location (     ) ,   (     )  represents the 

intercept at location i,   (     ) represents the 

local parameter estimate for explanatory 

variable    at location i, and     (i = 1, 2,…,n) is 

the random error term at point i. To estimate the 

parameters in Eq. (9), an observation is 

weighted according to its proximity to a specific 

point i, Therefore, the weighting of an 

observation in the analysis is not constant, but a 

function of geographical location. The 

parameters in Eq. (9) may be estimated by 

solving the following matrix equation (Gao et 

al., 2012): 

, ̂(   )  (   (   ) )     (   ) -                (10) 

where,  ̂(   ) represents the unbiased estimates 

of β, and  (   )  is the weighting matrix, 

whose role is to ensure that observations nearer 
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to the specific location have larger weight. In 

this study we used the following Gaussian 

weighting kernel function form (Fotheringham 

et al., 2002; Li et al., 2012): 

,       (
   
 

  
)-                                               (11) 

where,     is the Euclidean distance between 

regression point i and neighboring observation j, 

and b represents a basal width of the kernel 

function, called bandwidth (Li et al., 2012). The 

comparison of the regression models can be 

achieved by several diagnostic statistics, such 

as: AIC (Akaike Information Criterion), R2, 

adjusted R2 and Sigma (the square root of the 

normalized residual sum of squares). All of 

these diagnostic statistics were used to compare 

the models. In this research, GWR and OLR 

analysis was carried out using ArcGIS 9.3. The 

TM image of the day 2010/8/7 was selected to 

carry out this analysis. Initially, the NDVI raster 

layer resampled to 120 m spatial resolution to 

make similar spatial resolutions of both LST 

and NDVI layers, and then, all layers were 

converted to vector format. 

3- Results and Discussion 

3.1- Spatial-temporal changes of LST and 

NDVI 

3.1.1- Global Spatial Autocorrelation 

To explore the spatial autocorrelation of the 

LST in the study area at different scales, the 

resultant LST images are resampled to the 

spatial resolution of 360, 720 and 960 m. Table 

3 shows the values of Global Moran’s I of the 

LST images at different levels of spatial 

resolution. The values of Global Moran’s I of all 

images are significantly positive, which 

indicates that the LST in Tehran has a 

characteristic of spatial aggregation with 

significant spatial positive correlation. Table 3 

shows the z scores of the global spatial 

autocorrelation analysis, which have high global 

autocorrelation coefficients. These coefficients 

are much higher than the threshold value of 2.54 

(with 0.01 level of the significance); this also 

confirms that the LST in Tehran has strong 

spatial autocorrelation and the hypothesis of 

randomness is rejected. Thus, the LST of 

Tehran is clustered such that the higher LST 

values are surrounded by higher LST neighbors 

and lower LST values by lower LST neighbors. 

The value of Global Moran’s I decreases as the 

spatial scale increases, the Global Moran’s I 

reaches 0.86, 0.72, 0.51 and 0.46 at the scales of 

120, 360, 720 and 960 m in 1987. Also, it 

reaches 0.877, 0.778, 0.62 and 0.593 at the 

scales of 120, 360, 720 and 960m in 2010 

(Table 3). It can be concluded that the amount 

of similarity of LST values in Tehran is greater 

at small scales than the large spatial scales. In 

other words, at the larger spatial scales (such as 

720 and 960 m) the small hot and cold clusters 

disappear and only the big clusters remain. 

Consequently, we can obtain more details in 

relation to UHI at the small spatial scales (such 

as 120m) in the study area . 

Table 3.Global Moran’s I values in different levels of spatial resolution for LST ( *Significant at 0.01 level). 

Table 3 shows the temporal changes of the 

distribution of LST in the study area. The global 

spatial autocorrelation of LST indicates an 

increasing trend through the study period. It was 

0.86 in 1987 for 120 m resolution but increased 

to 0.877 in 2010. Also, it increased from 0.46 to 

0.593 for 960 m resolution. The increasing trend 

of global spatial correlation has two possible 

implications. On one hand, the increase could be 

due to the LST of pixels in each cluster 
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becoming more similar in Tehran. On the other 

hand, it might result from the emergence of 

newly formed clusters. The Moran’s global I 

does not help us distinguish between these 

possibilities. As a result we calculated the local 

spatial autocorrelation analysis to disclose these 

differences. 

In order to explore spatial- temporal changes of 

the distribution of green cover in Tehran and 

compare it to LST, Moran’s I was also 

calculated for NDVI. Table 4 shows the values 

of Global Moran’s I of the NDVI at spatial 

scales of 30 and 120m. Similar to those of LST, 

the values of Global Moran’s I of all NDVI 

images are significantly positive (statistically 

significant at 0.01 level), which indicate that a 

clustered pattern exists for NDVI as well. 

According to Table 4, the global spatial 

autocorrelation of NDVI has decreased during 

the 1987- 2010 period. For example, it was 0.85 

in 1987 for 30 m resolution but decreased to 

0.81 in 2010. It can be guessed that many of the 

hot or cold clusters of NDVI were diminished or 

fragmentized during the study period. 

Consequently, the increasing trend of global 

spatial autocorrelation of LST could be related 

to decreasing trend of global spatial 

autocorrelation of NDVI values. As it is 

mentioned above, to obtain more assurance, the 

local spatial autocorrelation index was 

calculated. 

Table 4) Global Moran’s I values in different levels of spatial resolution for NDVI (*Significant at 0.01 

level). 

 

3.1.2- Local Indicators of Spatial Association 

(LISA) 

The LISA maps can further detect the locations 

of the interesting spatial patterns for both LST 

and NDVI variables. The results of the LISA 

statistics for LST are shown in Fig. 2. 

According to Figs. 2a and 2b the hot clusters 

(HH clusters) are distributed mainly on the west 

and southwest of Tehran, especially over the 

Mehrabad airport in district 9 and highly 

industrialized zone and bare lands of districts 

22, 21, 18, 9 and 5. Undoubtedly, the main 

center of UHI is continuously located over the 

west and southwest of Tehran during the study 

period, with the Mehrabad airport being the 

hottest spot.  The other hot spots are dispersed 

all over the city, especially in the  old 

downtown and central Bazaar, Dooshantappeh 

Airport, Ghale-Morghi, Railway Station, bus 

terminals, big silo, factories and etc. (see Fig. 

1). The mostly vegetated northeast region of 

Tehran is strongly occupied by the LL clusters 

of LST (Figs. 2a and 2b). Therefore, the cold 

spot of Tehran is situated in the north of Tehran 

over Shemiranat and considerable portion of 

districts 2, 3 and 4. The other LL clusters 

correspond mostly to the green areas and urban 

parks. 

Comparison of the LISA cluster maps for the 

period 1987-2010 shows that the spatial 

distribution of hot spots have shifted westward 

during the study period (Figs. 2a and 2b). 

Despite the weakening or disappearing of some 

hot spots in districts 1, 2, 3 and 5; the most 

important spatial changes have been occurred in 

the parts of Western and South-West of Tehran. 

The hot spots that situated in district 22 have 

been moved to the West and strengthened. In 

addition, the new hot clusters have appeared in 

west and south west (i.e. in districts 9, 18, 19 

and 21).  In contrast, the green space and cover 

has been diminished in the west of the city. 

On the contrary, some of LL clusters 

disappeared or were fragmented during the 



Journal of Tethys: Vol. 3, No. 3, 237–250                                                                                  ISSN: 2345–2471 ©2015 

                                                                                    245   

study period. For example, some of the LL 

clusters of the southern and western parts of the 

city (districts 19, 18, 21 and 22) diminished or 

were fragmented in 2010.  

Based on the appearance and expansion of the 

HH clusters and gradual decrease of LL clusters 

in the west and southwest of Tehran (District 9, 

18, 19, 21 and 22), the area and intensity of 

Tehran UHI gradually spread and strengthened 

at the expense of cold spots of the city. There 

are probably many reasons for expanding of 

UHI effect in Tehran. First, the expansion 

direction of UHI is accordant with the spatial 

expansion of industrial, transport and 

commercial land use in the west, southwest and 

south of Tehran (districts 22, 21, 18 and 19). 

Therefore, it can be concluded that the 

expansion of these infrastructures have played 

the most important role in intensification of the 

UHI effect in west and southwest of Tehran. 

These land use types were covered by dark 

materials (such as asphalt, concrete, etc.) and 

metallic roofs (galvanized or aluminum 

materials) that have a low reflectivity, so they 

absorb and store solar energy instead of 

reflecting them. This warms the environment. 

Second, the dispersed bare land spots of the area 

forms the hottest places during the hot seasons 

of the year. Third, the large quantities of 

vegetation cover have been cut and disappeared 

overall the city (especially in the districts 18, 

19, 21 and 22). 

 

  

  

Figure 2) The spatial pattern of LISA clusters in 1987/7/23 (a) and 2010/7/22 (b). The LST maps of these 

images are shown in (c) (1987/7/23) and (d) (2010/7/22) 

The spatial distribution of NDVI clusters are 

shown in Fig. 3. In 1987, the HH clusters were 

locally concentrated in the north (district 1, 2, 3 

and 4), southwest (district 18) and west of the 

study area (districts 21, 22 and 5) (Fig. 3a). But 

in 2010, the HH clusters have been decreased 

considerably, especially in the north, west 

(districts 9, 21 and 22), and southwest of Tehran 

(districts 18, 19) (Fig. 3b). This decreasing trend 

of green space HHs increased the HH clusters of 

LST as is seen in Fig. 2. 
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To clarify this spatial correlation, the LISA 

statistics were calculated and presented in 

Tables 5 and 6. According to these tables the 

number of HH clusters of LST has increased 

while that of NDVI has decreased. That is, as 

the green space coverage decreased, the extent 

and intensity of hot spots increased. At the same 

time a number of cold spots were decreased. 

Thus during the study period the whole city has 

gone under warming process. And the overall 

temperature of the city has increased. Another 

indication for this overall warming trend of the 

city is the absence of HL or LH spots of 

temperature through the study period. In other 

words, the warming trend of the city is 

relatively homogenous over the city. But on the 

other hand the spatial change of the NDVI 

clusters is not homogenous over the city. 

  
Figure 3a) The LISA clusters map of NDVI in 1987/7/23 and b) 2010/7/22. 

Table 5) Frequency of local spatial clusters of the LST in 120 meters spatial resolution. 

 

Table 6) Local spatial autocorrelation characteristics of NDVI in 120 meters spatial resolution. 

 

3.2- The LST-NDVI relationship 

In order to compare the green cover and urban 

heat island effects, statistical analysis of the 

LST-NDVI relationship is carried out. The 

correlation coefficient of LST and NDVI is -

0.54 being significant at 0.05 level. It indicates 

that the expansion of the green space can 

weaken the urban heat island effect. Table 7 

shows the results of GWR and OLR models. 

Based on diagnostic statistics of Table 7, the 

GWR model is better than the OLS model, 

because the GWR has the higher R2, lower 

AIC, and lower Sigma values. This better 

performance of the GWR model is due to the 

fact that this model uses a geographical 

parameter which is very good in heterogeneous 

areas such as Tehran. 

Table 7) Comparing the performance of GWR and OLR models. 
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4- Conclusions 

In this study, the relationship between the 

spatial- temporal changes of UHI and the green 

cover in Tehran was analyzed over a period of 

24 years. First, the mono-window algorithm was 

applied to retrieve the LST of Tehran using the 

Landsat TM6 data. Then, the global and local 

spatial autocorrelation analyses were applied to 

quantify the characteristics of spatial and 

temporal changes of LST and NDVI at different 

scales and periods in Tehran. The exploration of 

spatial pattern in LST and NDVI images of 

Tehran clearly demonstrated the presence of 

significant spatial clusters of high and low 

values (hot and cold clusters) during the 

observed period 1987– 2010. We also found 

that the frequency and distribution of HH and 

LL clusters changed over time. The spatial 

pattern of the LST and UHI has expanded 

toward west and southwest of Tehran and the 

UHI effect was intensified. The LST trend 

showed an increase during study period while 

that of NDVI demonstrated a decreasing pattern. 

In contrast to hot spots, the green spots were 

accumulated over the north and east of Tehran. 

Based on the LISA analysis, the increasing 

trend of HH clusters of LST is closely related to 

the decrease of HH clusters of NDVI. 

Accompanying with decreasing of vegetation 

cover, green cover cooling effect also has 

decreased, and consequently, UHI effect was 

intensified from 1987 to 2010. Our results 

shows that most of the UHI controlled areas 

have been located in the western and 

southeastern parts of Tehran, where Mehrabad 

airport, commercial lands, the large industries, 

and barren lands are located. The distribution of 

LST shows largely significant difference 

between the west and southwest sectors and the 

north of city. These differences are related not 

only to the amount of vegetation, but also with 

the quality of the constructions. These land use 

types were covered by dark materials (such as 

asphalt, concrete, etc.) and metallic roofs 

(galvanized or aluminum materials) that have 

high absorbing power and store solar energy. 

The results demonstrate the usefulness of spatial 

autocorrelation technique for analysis of spatial 

and temporal changes of LST and green cover 

in urban areas. The relationship between LST 

and NDVI was investigated by the OLS and 

GWR models. Based on the diagnostic statistics, 

the GWR is stronger than the OLR model, and 

is characterized by the higher R2, lower AIC, 

and lower Sigma values. Due to spatial 

heterogeneity of Tehran urban area, the GWR 

model showed better performance in 

demonstrating the relationship between heat 

island intensity and vegetation cover than the 

OLS model. 
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