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Abstract 

The objective of this study was to explore the application of hybrid artificial neural network 

methods to predict heavy metals in rainwater based on major elements. Measurements of the heavy 

metals Pb, Cu, Zn, As, Ni, Hg, and Fe in soluble rain fractions were performed in rainwater 

collected at the Arak plain during the rainy seasons of 2012. In the soluble fractions, the 

concentrations of the heavy metals decreased in the order Fe, Pb, Zn, Ni, Cu, As and Hg. 

Enrichment factor related to the relative abundance of elements in crustal material were calculated 

using Fe as reference. The high enrichment factor (EFcrustal) suggested that, in general, heavy metals 

had an anthropogenic origin. Industrial activity and traffic are the source of heavy metals in the 

rainwater samples in the Arak city. Prediction of the heavy metals in the rainwater is important in 

developing any appropriate remediation strategy. This paper attempts to predict heavy metals of 

rainwater in Arak city using a new approach based on hybrid artificial neural network (ANN) with 

particle swarm optimization (PSO) algorithm by taking major elements (Cl, Mg, Na, SO4) in 

rainwater. For this purpose, contamination sources in rainwater were recorded 50 data samples and 

several models were trained and tested using collected data. It determined the optimum model in 

each model based on four inputs and five outputs. The results obtained indicate that ANN-PSO 

model has strong potential to estimation of the heavy metals in the rainwater with high degree of 

accuracy and robustness. 

Keywords: Artificial Neural Network; Particle Swarm Optimization; Heavy Metals; Enrichment 

Factor; Rainwater. 

1- Introduction 

The study of heavy metals in rainwater has 

increased in the last decades because of their 

adverse environmental and human health effects 

(Balogun et al., 2016; Castillo et al., 2013; 

Cheng and You 2010; Vuai and Tokuyama 

2011; Wetang’ula and Wamalwa 2015). 

Anthropogenic sources have substantially 

increased heavy metal concentrations in 

atmospheric deposition (Bai and Wang 2014; 

Montoya-Mayor et al., 2013). If the 

concentrations are too high, many of the heavy 

metals can harm human health through the 

consumption of drinking water and/or aquatic 

organisms. Rainout and washout are the 

predominant processes of deposition by rain 

(Nickel et al., 2015; Pons-Branchu et al., 2015; 

Umeobika et al., 2013; Wilbers et al., 2013). 

Atmospheric transport and deposition processes 

are important in the global recycling of heavy 

metals (Lim et al., 2014). Since the atmosphere 

of Arak City is one of the most polluted cities in 

the Iran, it was considered important to analyze 

the heavy metals Pb, Cu, Zn, As, Ni, Hg, Fe and 

the major ions Ca, HCO3, SO4, Na, K, Mg and 

Cl for the soluble fractions. Dissolved 

substances which have important impacts on the 
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distribution of heavy elements near playa are 

scavenged by dusts and rains. More knowledge 

about heavy metal concentrations in rainwater 

can provide potential fingerprints for identifying 

heavy metal sources (Castillo et al., 2013). 

Hence, it is necessary to establish more baseline 

data regarding the chemical composition of 

rainwater especially for compounds related to 

anthropogenic activities (Cuoco et al., 2013; 

Holloway and Littlefield 2011; Lim et al., 2014; 

Niu et al., 2014). 

Moreover, over the years, the application of 

artificial neural network (ANN) in different 

fields of engineering has been developing. 

ANNs have a special capacity to estimate the 

dynamics of nonlinear systems in many 

applications in a black box manner (Downs and 

Vogel 1993). In addition, several different 

efforts have been proposed by various 

researchers to propitiate this training problem 

(Sexton et al., 2004). Almasri and Kaluarachchi 

(2005) applied the modular neural networks to 

predict the nitrate distribution in groundwater 

using the on-ground nitrogen loading and 

recharge data. Khandelwal and Singh (2005) 

predicted the mine water quality by the physical 

parameters using back propagation neural 

network and multiple linear regressions. Erzin 

and Yukselen (2009) used the back propagation 

neural network for the prediction of Zeta 

potential of kaolinite. Singh et al., (2009) 

modeled the back propagation neural network to 

predict water quality in the Gomti River India. 

Rooki et al. (2011) predicted the heavy metals 

in acid mine drainage using ANN from the Shur 

River of the Sarcheshmeh porphyry copper 

mine, Southeast Iran. 

In spite of all advantages of ANNs, these 

methods are associated with some limitations. 

To overcome these problems, the use of 

powerful optimization algorithms to optimize 

ANNs is of advantage. The PSO is an influential 

population-based stochastic approach for 

solving discrete and continuous optimization 

problems. Since PSO is a strong global search 

algorithm, it can be utilized to adjust weights 

and biases of ANNs in order to increase the 

performance of ANNs (Katherasan et al., 2014; 

Nedic et al., 2014). In this paper, ANN-PSO 

model is applied to estimation of heavy metals 

using real data obtained from rainwater in Arak 

city. 

 
Figure 1) Location map of the collected some samples in Arak plain. 
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2- Materials and methods 

2.1- Sampling Site 

The Arak plain is bounded in south and north by 

high mountain’s Arak and Ashtian, of Mesozoic 

and Cenozoic age. It also divided the region into 

a mountainous part and semi-arid central part 

(Mighan playa, Fig. 1). The Mighan playa has 

an annual rainfall of 300 mm and the average 

annual temperature 19
o
C. The total catchment 

area of playa is 5500 Km
2
. The playa occupies 

an area of about 110 Km
2
 and the average depth 

of water is about 0.5 m. Two major ephemeral 

streams, namely Gharakahriz and Ashtian and 

many minor ephemeral streams from Farmahin, 

Amanabad and Haftadgholeh feed the playa. 

The surface of the Mighan playa presently 

undergoes complete desiccation every summer 

forming an efflorescent crust. This crust 

essentially consists of gypsum, glaubrite, halite 

and calcite minerals. It dissolves when it comes 

in contact with fresh run off during the next rain 

and this process increases the solute load of the 

playa brine. In terms of chemical composition, 

the brine is known to be practically high in SO4 

and Na. Na2SO4 and NaCl are the main 

constituents of the brine. This playa receive 

sediments from weathering of highly folded and 

metamorphosed Mesozoic rocks of the Arak 

mountains in south and sedimentary, volcanic 

rocks of the Ashtian mountains in north. The 

Arak Mountains included slate, phyllite, 

crystallized limestone. Arak plain divided to 

two sedimentary facies. The first facies contain 

terrigenous materials that are located near to 

mountains and include calcareous soils and 

were produced from weathering rocks in high 

lands, but the second facies are evaporate 

material and located near to Mighan playa and 

have saline soils that are rich of sodium sulfate. 

Arak is one of the regions affected by rainfall 

contamination of industrial origin. The region is 

one of the industrial regions in Iran where the 

impact of rapid population growth and 

industrialization on limited natural sources and 

agricultural lands is progressively high and as a 

result, the size of uncontaminated areas is 

getting diminished. Due to expanding 

industrialization and urbanization in Arak and 

the unrestrained disposal of factory wastes to 

rainfall, it is thought that heavy metal contents 

in this region are high. Therefore, monitoring of 

this change and determination of contamination 

in rainfall has gained importance. 

2.2- Sample Collection and Analysis 

50 samples of rainwater were collected on the 

roof of the general buildings. Rainwater samples 

were collected in 2012 and the rainy season in 

Arak City. The sampling locations were selected 

around and the center of city as shown in Fig. 1. 

The samplers used for collection contained a 20-

cm diameter funnel made of high-density 

polyethylene, which was set at 1.2 m above the 

roof. The funnel was connected with a 20 L 

high density polyethylene container. The water 

volume was measured in situ and pH was 

measured before filtration. The filtered samples 

(0.45 μm) were acidified to pH less than 2 using 

HCl 6N. The samples were stored at 4 °C for 

later analysis. The samples were analyzed using 

Potentiometer (ION
3
) for heavy elements such 

as Pb, Cu, Zn, As, Hg and HNO3, SO4, Cl, Na, 

K, Ca and Mg were analyzed by Multimeter. 

The precision and bias of the analysis for major 

ions and trace metals were determined from 

quality control check samples prepared in the 

laboratory. Five replicate measurements of each 

element were made. 

3. ANN-PSO Model 

3.1- Artificial Neural Networks 

The ANN is an artificial intelligence technique 

that has been demonstrated to solve many 

composite engineering problems successfully. It 

is an information-processing system in which 

system information is processed by several 

interconnected simple elements that are known 

as nodes or neurons, positioned in the network 

layers. The best ANN has been identified as the 
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multilayer perceptron (MLP) model, which is 

composed of three different layers: input, output 

and hidden layers (Armaghani et al., 2014; 

Armaghani et al., 2015). 

ANNs provide a nonlinear mapping between 

outputs and inputs by its intrinsic ability 

(Hornik et al., 1989; Kulluk et al., 2012). The 

success in obtaining a reliable and robust 

network depends on the correct data 

preprocessing, correct architecture selection, 

and correct network training choice 

powerfully(García-Pedrajas et al., 2003). Multi-

layer perceptron, the most famous type of 

ANNs, consists of at least three layers: input, 

intermediate or hidden layers and output. 

Difficulty level of the problem determines the 

number of the hidden layers and neurons 

(Simpson, 1990). 

3.2- Particle Swarm Optimization Algorithm 

The PSO was firstly suggested by Eberhart and 

Kennedy (1995) in order to solve problems with 

continuous search space. The PSO is based on 

the metaphor of communication and social 

interaction, such as bird flocking and fish 

schooling. The PSO uses social rules to search 

in the design space by controlling the 

trajectories of a set of independent particles. 

The position of each particle, xi, representing a 

particular solution of the problem, is used to 

compute the value of the fitness function to be 

optimized. Each particle may change its position 

and consequently may explore the solution 

space, simply varying its associated velocity. In 

fact, the main the PSO operator is the velocity 

update, which considers the best position, in 

terms of fitness value reached by all the 

particles during their paths, t

gP , and the best 

position that the agent itself has reached during 

its search, t

iP , resulting in a migration of the 

entire swarm toward the global optimum 

(Hassan et al., 2005). 

At each iteration, the particle moves around 

according to its velocity and position; the cost 

function to be optimized is evaluated for each 

particle in order to rank the current location. 

The position of each particle is updated using its 

velocity vector as shown in Eq. (2) and depicted 

in Fig.  2. 

1

1 1 2 2( ) ( )t t t t t t t t

i i i i g iV V C r P X C r P X        (1) 

1 1t t t

i i iX X V                                            (2) 

where, t

iV is the velocity vector at iteration t, 

r1and r2 represents random numbers in the range 

[0,1]; 
t

gP denotes the best ever particle position 

of particle i, and t

iP corresponds to the global 

best position in the swarm up to iteration t (Shi 

and Eberhart, 1998). The remaining terms are 

problem-dependent parameters; for example, C1 

and C2 represent "trust" parameters indicating 

how much confidence the current particle has in 

itself (C1: cognitive parameter) and how much 

confidence it has in the swarm (C2: social 

parameter), and ω is the inertia weight (Ali 

Ahmadi, 2012). 

 
Figure 2) Depiction of the velocity and position 

updates in PSO 

3.3- Implementation ANN-PSO Model 

The main objective in ANN training is to adjust 

a set of weights and biases that minimized an 

objective function. Typically, root mean squared 

error (RMSE) is used as the objective function 

in ANNs. The PSO and ANNs employ different 

approaches to minimize an objective function. 

Usually, there is more probability for 

convergence at a local minimum by ANNs, 

whereas, PSO is capable to find a global 
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minimum and continues searching around it. 

Therefore, ANN-PSO model has the search 

properties of both PSO and ANN; PSO looks 

for all the minima in the search space and ANN 

used them to find the best results. 

With the purpose of using PSO to train an ANN, 

a proper representation function should be 

determined. Since the main target of ANNs is to 

obtain the minimum error between actual and 

predicted values, RMSE is defined as 

representation function. In this case, each 

particle represents a candidate solution to 

minimize RMSE. Each component of a particles 

position vector represents one ANN weight or 

bias. Lastly, the optimum weights and biases are 

presented to determine the minimum RMSE. 

Figure 3 depicts the flowchart of ANN-PSO 

model. 

 

Figure 3) The flowchart of ANN-PSO model. 

4- Estimation of Heavy Metals Using ANN-

PSO Model 

To simulate heavy metals in rainwater using 

ANN-PSO model, all relevant parameters 

should be determined, due to the fact that ANNs 

work based on given data and do not have 

previous knowledge about the subject of 

prediction. Following sections describe the 

input and output parameters and simulation of 

heavy metals in rainwater using ANN-PSO 

model. 

4.1- Input and Output Data 

According to the correlation matrix  SO4, Na, 

Mg and  Cl that have most dependent on heavy 

metals (Pb, Cu, Zn, As and Hg) concentrations 

were selected as inputs of the network (Table 1) 

.The outputs of network were heavy metals 

concentrations including Cu, Fe, Mn and Zn. In 

ANN-PSO modeling, any type of input can be 
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used as long as they have effects on output results. 

Table 1) Correlation matrix between heavy metals concentrations and independent variables. 

 Pb Cu Zn As Ni Hg Fe Ca HCO3 SO4 Na K Mg Cl 

Pb 1.00              

Cu -0.17 1.00             

Zn -0.25 0.02 1.00            

As -0.16 0.07 0.52 1.00           

Ni 0.39 0.03 -0.30 0.03 1.00          

Hg 0.16 -0.15 -0.01 -0.27 -0.14 1.00         

Fe 0.48 -0.10 -0.27 -0.13 -0.08 0.03 1.00        

Ca 0.22 -0.18 0.16 -0.13 0.31 -0.40 -0.01 1.00       

HCO3 0.23 0.21 0.22 0.05 0.33 -0.44 0.05 0.62 1.00      

SO4 -0.72 0.74 0.72 0.76 -0.09 -0.55 -0.27 0.10 0.40 1.00     

Na -0.60 0.63 0.67 0.65 -0.18 0.65 0.04 -0.39 0.27 0.71 1.00    

K 0.06 0.25 0.33 0.00 -0.38 -0.42 0.08 0.20 0.23 0.20 0.15 1.00   

Mg -0.65 -0.62 0.68 0.65 -0.26 -0.51 -0.17 0.24 -0.06 0.36 -0.10 0.14 1.00  

Cl 0.65 -0.61 0.65 -0.53 -0.07 -0.57 0.46 0.25 0.48 -0.08 0.06 0.33 0.05 1.00 

To train and verify the accuracy and ability of 

the ANN-PSO model, a total of 50 data samples 

records in rainwater from Arak city, Iran were 

used in this research. All data were randomly 

divided into two subsets: 80% of the total data 

(40 cases) was allotted to training data of ANN-

PSO model construction and 20% of the total 

data (10 cases) was allocated for test data used 

to assess the reliability of the developed ANN-

PSO model. In this model, four input parameters 

including SO4, Na, Mg and Cl (major ions) and 

output including Pb, Cu, Zn, As, Hg (heavy 

metals) were used to estimation of heavy metals 

in rainwater from Arak city, Iran. A few 

samples of the training data sets are shown in 

Table 2. Also, descriptive statistics of the data 

sets used for modeling are shown in Table 3. 

Table 2) A few samples of the training data sets, ANN-PSO model. 

No. 
Input 

 
Output 

SO4 Na Mg Cl 
 

Pb Cu Zn As Hg 

1 19.5 2.75 5.21 3.0 
 

0.013 0.220 0.132 0.162 0.006 

2 19.6 2.73 5.22 2.9 
 

0.014 0.210 0.14 0.150 0.007 

3 19.7 2.74 5.21 2.9 
 

0.013 0.220 0.135 0.150 0.0065 

4 19.4 2.73 5.22 2.9 
 

0.014 0.230 0.140 0.160 0.007 

5 20.1 2.80 5.19 3.0 
 

0.010 0.210 0.134 0.166 0.007 

6 108 14.2 42 3.9 
 

0.021 0.001 0.610 0.750 0.007 

7 105 13.9 43 3.9 
 

0.030 0.002 0.590 0.740 0.007 

8 100 14.2 42 3.8 
 

0.022 0.002 0.650 0.780 0.006 

9 109 14 44 4.0 
 

0.020 0.001 0.623 0.762 0.008 

10 36 3.02 0.22 3.9 
 

0.250 0.031 0.072 0.440 0.052 

4.2- Pre-Processing of Data 

In data-driven system modeling methods, some 

pre-processing steps are usually implemented 

prior to any calculations, to eliminate any 

outliers, missing values or bad data. This step 

confirms that the raw data retrieved from 

database is perfectly proper for modeling. In 

order to softening the training procedure and 

improving the accuracy of prediction, all data 

samples are normalized to adapt to the interval 

[0, 1] according to the following linear mapping 

function: 
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min

max min

M

x x
x

x x





                                       (3) 

Where x is the original value from the dataset, 

xM is the mapped value, and xmin (xmax) denotes 

the minimum (maximum) raw input values, 

respectively. It is to be noted that model outputs 

will be remapped to their corresponding real 

values by the inverse mapping function ahead of 

calculating any performance criterion. 

Table 3) Descriptive statistics of the data sets. 

Parameter Maximum Minimum Mean 

Pb 0.800 0.010 0.182 

Cu 0.230 0.001 0.054 

Zn 0.650 0.069 0.181 

As 0.850 0.032 0.263 

Hg 3.400 0.001 0.297 

SO4 155 3.00 37.13 

Na 100 1.08 10.077 

Mg 44 0.20 9.68 

Cl 14 2 4.4 

4.3. Tuning Parameters for the PSO 

To develop an accurate ANN model, the 

training, and validation processes are the 

important steps. In the training process, a set of 

input-output patterns is repeated to the ANN. 

From that, weights of all the interconnections 

between neurons are adjusted until the specified 

input yields the desired output. Through these 

activities, the ANN learns the correct input-

output response behavior. The model training 

stage includes choosing a criterion of fit (Root 

mean squared error) and an iterative search 

algorithm to find the network parameters that 

minimizes the criterion. PSO is used to 

formalize a systematic approach to training 

ANN, and to insure creation of a valid model 

(Paoli et al., 2009; Rana et al., 2010; Wang and 

Wang, 2012). They are used to perform global 

search algorithms to update the weights and 

biases of ANN: Firstly, learning parameters C1 

and C2 in PSO should be assigned in advance, 

and then the objective function value is 

calculated for each particle. Secondly, the 

current search point of each particle is changed 

using Equation 1 and Equation 2. If maximum 

number of generations is reached or no better 

parameter vector is found for a significantly 

long time, then stop. Lastly, all particles 

congregate to a position on which the coordinate 

represents the best solution they found in the 

form of minimal RMSE between patterns and 

outputs of ANN. 

Furthermore, the selection of control PSO 

parameters plays an important role in the 

optimization. A single PSO parameter choice 

has a tremendous effect on the rate of 

convergence. For this paper, the optimal PSO 

parameters are determined by trial and error 

experimentations. The control parameters used 

for running the PSO shown in Table 4. 

Table 4) The control parameters used for running 

the PSO. 

Parameter Value 

Number of population (swarm size) 100 

Number of generations 1000 

Personal learning coefficient 1.3479 

Global learning coefficient 1.3479 

Inertia weights 0.64 

Fitness Root mean squared error 

4.4. Network Architecture 

Architecture of the ANN model includes type of 

network, number of input and output neurons, 

transfer function, number of hidden layers as 

well as number of hidden neurons. Generally, 

the input neurons and output neurons are 

problem specific. In this paper, multi-input 

multi-output structure had been utilized. The 

architecture of the network is given in Table 5. 

Also, in this study, tansig was used as transfer 

function between input and hidden layer, as well 

as was used as transfer function between hidden 

and output layer, shown by the following 

equation: 
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2
tansig 1

(1 exp( 2 ))x
 

 
                     (4) 

To evaluate the performances of the ANN-PSO 

model, RMSE and squared correlation 

coefficient (R
2
) were chosen to be the measure 

of accuracy. Let yk be the actual value and ˆ
ky be 

the predicted value of the k
th

 observation and n 

be the number of samples. The higher the R
2
, 

the better is the model performance. For 

instance, a R
2
 of 100% means that the measured 

output has been predicted exactly (perfect 

model). R
2
=0 means that the model performs as 

poorly as a predictor using simply the mean 

value of the data.  

Table 5) The architecture of the network 

Parameter Value 

No. of input neurons 4 

No. of output neurons 5 

No. of hidden layers 2 

No. of neurons in first hidden layer 20 

No. of neurons in second hidden layer 24 

No. of training data sets 40 

No. of testing data sets 10 

Also, the lower RMSE indicates the better 

performance of the model. RMSE and R
2
could 

be defined, respectively, as follows: 

2

1

1
ˆ( )

n

k k

k

RMSE y y
n 

                           (5) 

2

ˆ
2 1

2 2 2 2 2 2

ˆ

1 1

ˆ( )

ˆ ˆ( ) ( )

n

k k y y

k

n n

k y k y

k k

y y n

R

y n y n

 

 



 





 



 

          (6) 

Where ˆ( )y y  denotes the mean value of the 

ˆ( ), 1,..., ,k k
k n   respectively. 

5- Results and Discussion 

5.1- Heavy Elements Concentrations 

Metal concentration ranges are presented in 

Table3. The most abundant heavy metal in rain 

was Fe (180 µg/kg) followed by Ni (9.39 

µg/kg), Hg (0.43 µg/kg), As (0.26 µg/kg), Pb 

(18.90 µg/kg), Zn (18µg/kg) and Cu (9.11 

µg/kg). Such a large amount of all above metals 

in rainwater has been found in many polluted 

sites worldwide (Chudaeva et al., 2008; 

Farahmandkia et al., 2011; Koulousaris et al., 

2009; Melaku et al., 2008; Özsoy and 

Örnektekin, 2009; Viklander, 1999). 

Information for Hg and As is limited. The metal 

concentrations in rainwater, cited from 

literature, were compared with our data (Table 

6). The concentration of Ni in Arak was 

comparable to the values cited in Turkey (Özsoy 

and Örnektekin, 2009) and Cu was also in 

agreement with Paris  district (Garnaud et al., 

1999). However, our data for Zn and Pb were 

near the Dutch delta area (Nguyen et al., 1990) 

whereas those for Fe were near the minimum. 

Among the rare metals, As was almost lower 

than in concentration to the cited values by 

(Andreae, 1980), but Hg was considerably 

higher  than those in the Central Coast of 

California (Flegal et al., 2011). 

Table 6) Concentration of heavy metals in rain water (µg/kg) in different studies. 

Reference  Site * Ni Cu Pb Zn Fe As Hg 

Nguyen et al,. 1990 IA - 6.2-90.4 31.6-284 32-1318 - - - 

Nguyen et al., 1990 UA - 3.71-27.8 14.3-47 16.3-26.4 - - - 

Garnaud et al., 1999 UA - 7.2 10.5 29.8 - - - 

Viklander et al., 1999 UA - 255 237 646 - - - 

Melaku et al., 2008 UA - - 2.9-137 - - - - 

Chudaeva et al., 2008 RA - 1.3-31.6 0.17-0.69 21.6-113 - - - 

Koulousarais et al., 2009 RA - 2.9 3.3 39 1.2 - - - 

Ozsoy and Ornektekin, 2009 UA 7.23 3.94 11.4 50.2 743 - - 

Andreae 1980 UA - - - - - 0.59 - 

Flegal et al., 2011 UA - - - - - - 0.002-0.018 

Farahmandkia et al., 2011 UA - - 5.8-22.2 29.26-70 - - - 

This study UA 9.39 9.11 18.9 18 180 0.26 0.05 

5.2- Enrichment Factor 

EFcrust is source estimators of heavy metal and 

have been used to estimate anthropogenic or 

crust origins in rainwater  (Chabas and Lefevre, 

2000). Fe is selected as a reference element for 

calculation of EFcrust Eq. 7.: 
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EFcrustX = [(X/Fe) rain]/(X/Fe) crust  (7) 

The (X/Fe)crust is taken from (Taylor and 

McLennan, 1985). EFcrust fall in a range of 1– 

10 which suggests crust sources, 10– 500, 

moderate enrichment, and >500, extreme 

enrichment, respectively (Poissant et al., 1994). 

A severe contamination caused by human 

activities can be indicated by extreme EF 

enrichment. Using the UCC (Taylor and 

McLennan 1985) concentrations of each trace 

metal in Arak, the EFcrust factors were calculated 

using the Fe concentration determined in the 

rainwater samples. Figure 4 shows the box-

whisker graph of the EFcrust of the heavy 

elements. The high values of EFcrust found for 

all of the metals (except Hg) show that these 

metals in rainwater are non-crustal and 

indicated anthropogenic sources. However, 

these values may be different due to the 

chemical composition of local industrial 

activity. Fig. 4 shows the EF obtained, which 

were calculated from the upper continental crust 

(UCC) averages of metal concentrations 

(Pb=20; Cu=25; Zn=71; As=1.5; Ni=20; 

Hg=0.05 and Fe=35000mg/kg) (Taylor and 

McLennan, 1985). EFcrust for Pb, Cu, Zn, As and 

Ni were between 10 and 500, which was 

regarded as moderately enriched. The remaining 

metal, namely Hg had EFcrust lower than 10, and 

were classified as low enriched.  
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Figure 4) The Box-Whisker graph corresponding to 

EFcrust values calculated for heavy metals. 

Therefore, Hg enrichment might have occurred 

mainly by leaching of Hg from crustal materials 

(soil dust) during atmospheric washout 

processes, rather than by contamination. Other 

metals in rainwater, is, Pb, Cu, Zn, As and Ni 

(EFcrust: 10–500) are likely to be of 

anthropogenic origin. Zinc is known to be a 

marker element for burning fossil fuels and 

smelting non-ferrous metals and Zn released 

from such processes can be easily dissolved in 

rainwater (Halstead et al., 2000). Although the 

EFcrust in Arak was comparable to values from 

Canada (Poissant et al., 1994). Lead was the 

most highly enriched metal, and there is no 

doubt that this resulted from anthropogenic 

emissions such as burning of fossil fuels 

(including vehicle exhausts). Copper, Ni and As 

emanate from smelters and from oil-fired 

furnaces and ferroalloys smelters (Szefer and 

Szefer, 1986) and Hg has natural source 

(EFcrust< 0.05). 

5.3. Estimation of Heavy Metals 

A comparison between predicted values of 

heavy metals in the rainwater by the ANN-PSO 

model and measured values for 50 data sets at 

training and testing phases is shown in Figs. 5 

and 6. As shown in Figs. 5 and 6, the results of 

the ANN-PSO model in comparison with actual 

data show a good precision of the ANN-PSO 

model (see Table 7). 

Table 7) Performance of the model for estimation of 

heavy metals in the rainwater. 

Description R2 RMSE 

Pb 
Training datasets 0.77 0.125 

Testing datasets 0.72 0.119 

Cu 
Training datasets 0.88 0.027 

Testing datasets 0.91 0.032 

Zn 
Training datasets 0.93 0.047 

Testing datasets 0.95 0.044 

As 
Training datasets 0.75 0.143 

Testing datasets 0.83 0.157 

Hg 
Training datasets 0.87 0.371 

Testing datasets 0.66 0.432 

The performance indices obtained in Table 5 

indicate the high performance of the ANN-PSO 
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model that can be used successfully for the estimation of heavy metals in the rainwater. 

 
Figure 5) Comparison between measured and predicted heavy metals in the rainwater for training data sets, 

a) Pb, b)Cu, c) Zn, d) As, f) Hg. 
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Figure 6) Comparison between measured and predicted heavy metals in the rainwater for testing data sets, 

a) Pb, b) Cu, c) Zn, d) As, f) Hg. 

In order to increase the accuracy and 

applicability of ANN for estimation of heavy 

metals in rainwater, PSO algorithm was used to 

weighting ANN. Several ANN-PSO models 
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were trained and tested using obtained data from 

Arak city, to determine the optimum network. 

Performances of the selected ANN-PSO model 

using training and testing datasets are shown in 

Figs. 5 to 6 and Table 7. 

The predicted heavy metals fit the measured 

heavy metals almost perfectly for training 

datasets. Nevertheless, the predicted heavy 

metals denote fit perfectly to the measured 

heavy metals for testing datasets. In general, it 

can be said that the proposed ANN-PSO model 

is able to predict heavy metals with high degree 

of accuracy. 

6- Conclusion 

High concentrations of Pb, Cu, Zn, As and Hg 

were found in rainwater of Arak City. The high 

enrichment factors (EFcrustal) suggested that 

heavy metals were emitted mainly by 

anthropogenic sources. Industrial activity and 

traffic are the source of heavy metals in the 

rainwater samples in Arak city. Prediction of the 

heavy metals in the rainwater is important in 

developing any appropriate remediation 

strategy. In this paper, a new approach was 

developed based on the ANN-PSO model to 

estimation of heavy metals in rainwater from 

Arak city. To generate the proposed ANN-PSO 

model, a dataset consists of 50 samples was 

used. Four variables including SO4, Na, Mg and 

Cl (major ions) were used as input variables and 

Pb, Cu, Zn, As, Hg (heavy metals) were used as 

output variables. Consequently, it may conclude 

that ANN-PSO is a reliable system modeling 

technique for estimation of heavy metals in 

rainwater from Arak city, with highly 

acceptable degree of accuracy and robustness. 
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