# Preliminary Palaeomagnetic Characterisation of Basalts from Northeast Lebanon

Abdul Sahib Abdul Lateef

Previously of the Geology and Mineralogy Department, Royal Museum for Central Africa-Tervuren-Belgium.

\* Corresponding Author: abdulsah@yahoo.com

Received: 21 July 2016 / Accepted: 06 October 2016 / Published online: 10 October 2016

### Abstract

A preliminary palaeomagnetic results from basalt outcrops in northeast Lebanon is reported. The remanence carrier of the characteristic magnetisation is magnetite. Both variations of susceptibility and anisotropy directional data show that the measured directions of thermoremanent magnetisation (TRM) are representative of the ambient field at the time of cooling of these basalts through their blocking temperature. The natural remanent magnetism (NRM) and thermal and alternating field (AF) demagnetisation experiments indicate two magnetic components: 1) Normal polarity component and 2) Transitional/intermediate polarity component that imply two basaltic emplacements. The normal component is correlated to the long normal polarity subchron C5n.2n while the transitional / intermediate component is possibly related to a cryptochron within C5n.2n.

Keywords: Palaeomagnetism; Basalt; Bekaa Valley; Lebanon.

# **1-Introduction**

Previous palaeomagnetic studies in Lebanon (e.g. Van Dongen et al., 1967; Gregor et al., 1974; Henry et al., 2010) have been carried out on Mesozoic and Cenozoic rocks to solve structural and tectonical problems. In comparison, the present investigation is limited in scope and aim to constrain further a newly reported Miocene volcanics (Lateef, 2014) by providing their partial palaeomagnetic characteristics and acquire initial polarity decision. The location of the studied basalts is given in Figure 1. Photographs illustrating some features of the sampled localities are shown on Figs. 2 and 3.

# 2- Materials and methods

Palaeomagnetic analysis is directional; hence oriented samples are needed. In the present reconnaissance study, oriented block samples have been collected as illustrated in Figure 4. A total of 17 oriented samples have been collected from the two basalt localities (Table 1). Nine samples from Al-Qamoua location; four from site-1 (Qam 11, Qam 12, Qam 13, Qam 14), three from site-2 (Qam 25, Qam 26, Qam 27) and two from site 3 (Qam 38, Qam 39). From the second, northern Jisr Al-Asi location that represents one site, eight samples have been collected (Asi 11, Asi 12, Asi 13, Asi 14, Asi 15, Asi 16, Asi 17, Asi 18). Sample code designation constitutes first of three letters denoting the abbreviation of the location name, this is followed by two figures: the first is for site number while the second stands for the sample number.

All laboratory work has been carried out in the palaeomagnetism facility of the Centre of Physics of Earth, Dourbes, Belgium.

In the laboratory, the collected samples have been restored to their field position by making use of the field measurements. The samples were vertically drilled and multiple cores

#### Lateef, 2016

obtained from each sample (Except sample Asi 11, which has been lost during transport). Vertical coring assures that the AB direction will be tangent to the vertical fiducial mark on each cylindrical specimen (hence no need to transfer the AB direction for each cylindrical specimen). Later, slices or multiple specimens were prepared from each cylindrical core. A total of 34 specimens were obtained from the 9 samples from Al Qamoua location, and 24 specimens were obtained from the 7 samples from Jisr Al Asi location. Each slice is labelled with a mark indicating the top of the specimen. Specimens represent the highest level in the hierarchy of palaeomagnetic sampling scheme, and this is denoted by a third number (Specimen number) in the sample code (Table 2).



Figure 1) Location and associated topography of the sampled basalt outcrops. There are two sampled locations situated between Al Asi River Bridge and the archaeological column (Obelisk) of Al Qamoua. The northern Jisr Al Asi basalt localition (As), nearby Al Asi Bridge, is considered one sampling site representing single flow. It is a concordant, tilted basalt body within the clastic sequence of Al-Hermel Formation. The southern basalt localition (Qs) has a hillocky topography and comprises three sampling points (Qs1, Qs2 and Qs3) where each site is associated with distinctive physiographic dome formed by a basalt plug.



Figure 2) View from site Qs3 (Tell Abu Tineh). The view, a small quarrying pit, doesn't show the sampled basalt body but the criss-cross basalt veins (Micro sill and dike) within a metamorphosed (baked) host rock. Ballpoint pen stands for a scale.

#### **3- Results**

А Triaxial cryogenic magnetometer (2G Enterprises) was used for remanence measurements. magnetic For cleaning experiments a triple Mu metalshielded GSD-1 Schonstedt Alternating Field demagnetiser and Schonstedt TSD-1 Thermal Demagnetiser were used. KappaBridge KLY-3 and software SUSAR version 1.4 have been utilized in magnetic susceptibility measurements (k).

#### **3.1-** Natural Remanent Magnetisation (NRM)

Initially, the NRMs of all samples were measured. The most important measured parameters are shown in Table 3 and Table 4. The related equal area stereographic projections of non-cleaned NRM directions are provided by Figs. 5, 6 and 7.

# **3.2- Demagnetisation**

To remove soft, low-stability components of the NRM and isolate the high-stability components or the characteristic NRM (ChNRM), both thermal and alternating field (AF) demagnetisation has been applied on pilot samples. Both cleaning techniques tend to randomize unstable magnetic components of secondary origin that have lower coercive force (alternating field demagnetisation) or with low Curie temperatures (thermal demagnetisation). A total of seven specimens, three from the northern Al Asi location and four from the southern Al Qamoua location, have been selected for the demagnetisation experiments.



Figure 3) Al Asi basalt, the northern sampling location (As). (a) Basalt outcrop exposed by a road-cut, which exhibits spheroidal weathering forms guided by joints that are seen marked by whitish carbonate alteration product. (b) The tilted basalt (29° due west) of the basalt horizon is shown (Head of the downward arrow). In the background is monoclonal flexure with calcrete carapace that covers the underlying sequence of Al Hermel Fomation (Mudstone with interbedded conglomerate). In the far northwestern corner of the view is Al Hermil town. View looks northwestwards.



Figure 4) Procedure for oriented block sampling (Qs1 sampling site). Leveled tripod with sideways clinometers is used. The three legs of the tripod are labeled A, B and C respectively. First, the tripod was set with its two points A and B forming horizontal line with B pointed toward north. After marking the position of both points on the outcrop, the azimuth (with respect to north) of the AB line is measured using magnetic compass (no observable effect was found on the magnetic needle of the compass as one moves away or towards the

outcrop). After, the tripod is inclined until the third leg C meets the surface of the outcrop. The clinometer reading then registers the inclination (maximum angle of slope of the upper surface of sample, in degrees). After the A, B and C positions are marked on the outcrop, the sample is carefully removed from the outcrop. In the case of the northern sampling locality (As) the dip amount and direction of the tilted basalt are recorded.



Figure 5) Equal area stereographic projection of the NRM directions (a) Al Qamoua site-1 and (b) Al Qamoua site 2. Both plots show northward and down (positive) inclinations that provisionally define a Normal polarity. Site-2 displays lower scatter/lower incoherence in comparison to site-1.

#### **3.3-** Thermal Demagnetisation

Progressive stepwise thermal demagnetisation was carried on five pilot samples; two from Al Asi location (samples Asi 131 and Asi 184) and three from Al Qamoua location (samples Qam 125, Qam 271 and Qam 381). Starting from room temperature of 25°C, thermal cleaning was carried along successive heating thresholds of 100°C, 140°C, 180°C, 220°C, 260°C, 300°C, 340°C, 380°C, 420°C, 460°C, 500°C, 530°C, 560°C and finally 590°C. The changes of remanence intensity during thermal demagnetisation are shown in Table 5 and Figure 8. The graphical plot of the observed change in NRM is shown on Figure 8.



Figure 6) Equal area stereographic projection of the NRM directions Al Qamoua site-3. The data

show well clustering with southward declination and (down) positive inclination that provisionally indicates transitional/intermediate polarity, which is clearly in contrast with the other two Al Qamoua sites (Qam 1 and Qam 2). This assumes significance when compared to the deduced polarity from the other Jisr Al Asi location (see next section).



Figure 7) Equal area stereographic projection of the NRM directions, Al Asi site (Jisr Al Asi location) before (a) and after (b) tilt correction. The distribution of NRM after tilt correction shows more scatter (lower clustering), which can be attributed to secondary NRM component acquired after tilting. The plot indicates transitional/intermediate polarity with southward declination and down (positive) inclination which make this site comparable to NRM directions of Qam 3 site.

Table 1) The collected oriented block samples and associated field measurements from Al-Qamoua and Jisr el Asi locations.

| Location            | Site        | Sample No.             | AB-Azimuth             | Clinometer    | Remarks                           |
|---------------------|-------------|------------------------|------------------------|---------------|-----------------------------------|
| Al-Qamoua           | 1           | 1                      | N40°W                  | 49°           | Unnamed                           |
| Al-Qamoua           | 1           | 2                      | N70°W                  | 53°           | Unnamed                           |
| Al-Qamoua           | 1           | 3                      | N100°E                 | 41°           | Unnamed                           |
| Al-Qamoua           | 1           | 4                      | N14°E                  | 52°           | Unnamed                           |
| Al-Qamoua           | 2           | 5                      | N25°W                  | 30°           | Al-Qamoua monument                |
| Al-Qamoua           | 2           | 6                      | N75°E                  | 44°           | Al-Qamoua monument                |
| Al-Qamoua           | 2           | 7                      | N60°E                  | 47°           | Al-Qamoua monument                |
| Al-Qamoua           | 3           | 8                      | Ν                      | 21.5°         | Tell Abu Tineh                    |
| Al-Qamoua           | 3           | 9                      | N18°E                  | 27°           | Tell Abu Tineh                    |
| Jisr Al-Asi         | 1           | 1                      | N20°E                  | 40°           | from base of bed                  |
| Jisr Al-Asi         | 1           | 2                      | N10°W                  | 50°           |                                   |
| Jisr Al-Asi         | 1           | 3                      | N25°E                  | 28°           |                                   |
| Jisr Al-Asi         | 1           | 4                      | N10°W                  | 24°           | exceptionally "A" is toward north |
| Jisr Al-Asi         | 1           | 5                      | N5°E                   | 30°           |                                   |
| Jisr Al-Asi         | 1           | 6                      | N20°E                  | 38°           |                                   |
| Jisr Al-Asi         | 1           | 7                      | N                      | 32°           | southern extension of outcrop     |
| Jisr Al-Asi         | 1           | 8                      | N8E                    | 40°           | southern extension of outcrop     |
| N.B. in the AB azin | muth "B" is | toward north except fo | r sample 4 of Jisr Al- | Asi locality. |                                   |

| Specimens no.                                   |
|-------------------------------------------------|
| Qam 111, Qam 112,Qam 113,Qam 114,Qam 115        |
| Qam 121,Qam 122,Qam 123,Qam 124,Qam 125,Qam 126 |
| Qam 131,Qam 132,Qam 133,Qam 134,                |
| Qam 141,Qam 142,Qam 143,Qam 144                 |
| Qam 251,Qam 252,Qam 253                         |
| Qam 261,Qam 262,Qam 263                         |
| Qam 271,Qam 272                                 |
| Qam 381,Qam 382,Qam 383                         |
| Qam 391,Qam 392,Qam 393,Qam 394                 |
| Missing                                         |
| Asi 121,Asi 122                                 |
| Asi 131,Asi 132,Asi 133                         |
| Asi 141,Asi 142                                 |
| Asi 151,Asi 152,Asi 153                         |
| Asi 161,Asi 162,Asi 163                         |
| Asi 171,Asi 172,Asi1,Asi 174                    |
| Asi 181,Asi 182,Asi 183,Asi 184,Asi 185,Asi 186 |
|                                                 |

Table 2) Specimens prepared from the oriented block samples.

Curves of the five specimens don't display similar behaviour because of difference in stability and presence of different magnetic phases or components (magnetic mineral assemblage) and hence different Curie points. As for the spectrum of stability it can be observed that in variance with others, specimen Qam 271 reflects rapid decrease of NRM below 300°C with 10%-20% of the original remanence remained at this temperature. This specimen has curie points at 300-320°C that could not be identified well, at 420°C that could be associated with titanomagnetite or tetanomaghemite (Ti-iron oxides) and at 500-590°C related to magnetite. As for specimen asi 131, a phase can be seen in the range 260°C -280°C, another is that of Magnetite with the highest Curie point. For specimen Asi 284 three phases may be recognized, one at the range 300-320°C, another at 500°C that could lead to a spectrum towards 590°C. For specimen Qam 125, a Curie point can be identified at 420°C and then the range for the Magnetite curie spectrum between 500 and 590. In specimen Qam 381 there is a phase at 420°C and another at the maximum of magnetite, 590 °C. These magnetic phases are the cause for the drop of magnetic intensity around the corresponding temperatures as seen in the above figure. Note that the absence of low blocking temperatures (soft magnetism) and high average median destructive fields both indicate high stability of remanence. For all specimens, the blocking temperature of the characteristic component ranges from 440 to 590° C. Such variability is suggestive of variable mineralogic concentration.

# 3.4- Alternating Field (Af) Demagnetisation

Two pilot specimens, one from Al Asi locality (Asi 185) and the other from Al Qamoua locality specimen Qam 382 have been selected for alternating field (AF) demagnetisation experiments. The specimens were treated in successive alternating fields of 25 (d.r.2.5), 50 (d.r.2.5), 75(d.r.5), 100(d.r.5), 150(d.r.10), 200(d.r.10), 250(d.r.10), 300(d.r.25), 400(d.r.25), 500(d.r.25), 600(d.r.50), 800(d.r.50) and 600(d.r.50) Oersted [d.r. stands

for the corresponding "decay rate" at each A.F. peak value]. The record of NRM at successive AF demagnetisation steps for the two samples is shown in Table 6 and the plot of the observed change in magnetisation is shown on Figure 9.

| Table 3) Pre-demagnetisation-natura | l remanent magnetisation ( | (NRM), all specimens, | southern Al Qamoua. |
|-------------------------------------|----------------------------|-----------------------|---------------------|
|-------------------------------------|----------------------------|-----------------------|---------------------|

| Specimen | Az+X | Weight(g) | D     | Ι    | J         | Remarks                        |
|----------|------|-----------|-------|------|-----------|--------------------------------|
| Qam 111  | 54°  | 33.05     |       |      |           |                                |
| 112      | 54°  | 32.95     | 18.4  | 68.6 | 5.097 e-3 |                                |
| 113      | 54°  | 33.38     | 352.9 | 69.6 | 5.437 e-3 |                                |
| 114      | 54°  | 33.18     | 336.4 | 55.6 | 4.038 e-3 |                                |
| 115      | 54°  | 31.96     | 328   | 42.7 | 3.151 e-3 |                                |
| Qam 121  | 24°  | 32.78     | 312.5 | 11.7 | 2.154 e-3 |                                |
| 122      | 24°  | 32.98     | 357   | 62.1 | 2.521 e-3 |                                |
| 123      | 24°  | 31.78     | 312.5 | 13   | 2.042 e-3 |                                |
| 124      | 24°  | 32.56     | 315.8 | 9.7  | 1.930 e-3 |                                |
| 125      | 24°  | 32.53     | 313.8 | 15.4 | 2.165 e-3 | Pilot specimen for thermal DM. |
| 126      | 24°  | 32.25     | 312.1 | 16   | 2.040 e-3 |                                |
| Qam 131  | 194° | 32.99     | 142.7 | 5.3  | 3.131 e-3 |                                |
| 132      | 194° | 32.38     | 139.2 | 55.9 | 4.309 e-3 |                                |
| 133      | 194° | 32.65     | 143.4 | 2    | 3.426 e-3 |                                |
| 134      | 194° | 31.74     | 149.1 | 10.6 | 2.612 e-3 |                                |
| Qam 141  | 108° | 32.58     | 10.8  | 12.7 | 2.132 e-3 |                                |
| 142      | 108° | 32.62     | 7.9   | 13.4 | 2.346 e-3 |                                |
| 143      | 108° | 32.25     | 26.8  | 55.4 | 3.061 e-3 |                                |
| 144      | 108° | 32.18     |       |      |           | Discarded specimen             |
| Qam 251  | 69°  | 32.9      | 348.2 | 43.8 | 1.258 e-3 |                                |
| 252      | 69°  | 32.98     | 3.9   | 64.8 | 3.756 e-3 |                                |
| 253      | 69°  | 31.89     | 359.2 | 45.4 | 1.102 e-3 |                                |
| Qam 261  | 169° | 33.09     | 23.8  | 21.8 | 1.246 e-3 |                                |
| 262      | 169° | 32.91     | 26.9  | 71.1 | 3.001 e-3 |                                |
| 263      | 169° | 32.89     |       |      |           | Discarded specimen             |
| Qam 271  | 154° | 33.31     | 35.3  | 55.8 | 1.023 e-3 | Pilot specimen for thermal DM. |
| 272      | 154° | 33.41     | 35.3  | 53.5 | 9.837 e-4 |                                |
| Qam 381  | 94°  | 31.59     | 150   | 25.6 | 2.495 e-3 | Pilot specimen for thermal DM. |
| 382      | 94°  | 31.33     | 149.9 | 26.5 | 2.096 e-3 | Pilot specimen for A.F.DM.     |
| 383      | 94°  | 31.58     | 149.9 | 25.5 | 2.523 e-3 |                                |
| Qam 391  | 112° | 31.41     | 148.7 | 20.8 | 1.736 e-3 |                                |
| Qam 392  | 112° | 31.07     | 154   | 21   | 2.132 e-3 |                                |
| Qam 393  | 112° | 31.83     | 1     |      |           | Discarded specimen             |
| Qam 394  | 112° | 28.89     | 155.5 | 17.7 | 1.679 e-3 |                                |

Table 4) Pre-demagnetisation: natural remanent magnetisation (NRM), all specimens, northern Jisr Al Asi.

| Specim  | Az+X | Weight (gm) |       | Ι    | J         | Remarks                       |
|---------|------|-------------|-------|------|-----------|-------------------------------|
| en      |      |             | D     |      |           |                               |
| Asi 121 | 84°  | 32.99       | 202.7 | 71   | 4.949 e-4 |                               |
| Asi 122 |      | 32.96       | 198.6 | 69.6 | 5.950 e-4 |                               |
| Asi 131 | 119° | 33.15       | 227.1 | 88.7 | 2.035 e-3 | Pilot sample for thermal D.M. |
| Asi 132 |      | 33.07       | 200.2 | 70.5 | 3.353 e-4 |                               |
| Asi 133 |      | 32.53       | 204.1 | 63.5 | 4.911 e-4 |                               |
| Asi 141 | 264° | 32.69       | 195.6 | 55.5 | 1.245 e-3 |                               |
| Asi 142 |      | 29.27       | 207.5 | 59.6 | 1.062 e-3 |                               |
| Asi 151 | 99°  | 32.82       | 186   | 58.3 | 1.201 e-3 |                               |
| Asi 152 |      | 32.95       | 33.9  | 35.1 | 1.822 e-3 |                               |
| Asi 153 |      | 32.95       | 190.2 | 57.8 | 1.105 e-3 |                               |
| Asi 161 | 114° | 33.92       | 193.4 | 81.4 | 3.811 e-3 |                               |
| Asi 162 |      | 33.34       | 187.9 | 82.6 | 4.968 e-3 |                               |
| Asi 163 |      | 33.9        | 175.9 | 58.4 | 9.947 e-4 |                               |
| Asi 171 | 94°  | 32.77       | 169.9 | 61.5 | 8.005 e-4 |                               |
| Asi 272 |      | 32.91       | 165.7 | 58.7 | 9.070 e-4 |                               |
| Asi 273 |      | 32.89       | 205.4 | 87.9 | 5.756 e-4 |                               |
| Asi 274 |      | 32.39       | 161   | 53.8 | 8.823 e-4 |                               |
| Asi 181 | 102° | 32.23       | 173.9 | 36.1 | 6.990 e-4 |                               |
| Asi 182 |      | 31.96       | 166.7 | 58.7 | 1.224 e-3 |                               |
| Asi 183 |      | 31.77       | 180.4 | 54.5 | 5.080 e-4 |                               |
| Asi 184 |      | 31.66       | 169.7 | 36.4 | 7.088 e-4 | Pilot sample for thermal D.M. |
| Asi 185 |      | 32.11       | 169.7 | 38.4 | 7.152 e-4 | Pilot sample for A.F.Dem.     |
| Asi 186 |      | 32.09       | 171.4 | 38.9 | 7.512 e-4 |                               |

Table 5) NRM record of five pilot samples (Asi 131, asi 184, Qam 125, Qam 271 and Qam 381) during thermal demagnetisation at successive heating steps.

| Asi                    |            |              |                                         |              | Asi        |      |                                          |             |
|------------------------|------------|--------------|-----------------------------------------|--------------|------------|------|------------------------------------------|-------------|
| 131                    |            |              |                                         |              | 184        |      |                                          |             |
| T (°C)                 | D          | Ι            | J(Am <sup>2/</sup> Kg)                  | J/J0         | D          | I    | J(Am <sup>2</sup> /Kg)                   | J/J0        |
|                        |            |              | e <sup>-3</sup>                         |              |            |      | e <sup>-4</sup>                          |             |
| 20                     | 358.1      | 87.8         | 2.044                                   | 1            | 189.2      | 35.5 | 6.794                                    | 1           |
| 100                    | 235.3      | 87           | 1.896                                   | 0.927592955  | 187.7      | 35.5 | 6.678                                    | 0.982926111 |
| 140                    | 219.8      | 88.7         | 1.724                                   | 0.843444227  | 193.5      | 34.1 | 6.533                                    | 0.96158375  |
| 180                    | 222        | 88           | 1.564                                   | 0.765166341  | 190.8      | 35.8 | 6.446                                    | 0.948778334 |
| 220                    | 217.2      | 87.7         | 1.414                                   | 0.691780822  | 187.7      | 34.5 | 6.398                                    | 0.941713276 |
| 260                    | 209.2      | 86.8         | 1.323                                   | 0.647260274  | 188.3      | 34.3 | 6.357                                    | 0.93567854  |
| 300                    | 214.1      | 82           | 1.38                                    | 0.675146771  | 188.7      | 34.4 | 6.221                                    | 0.915660877 |
| 340                    | 215.9      | 81.2         | 0.9927                                  | 0.485665362  | 186.3      | 34.7 | 5.799                                    | 0.853547248 |
| 380                    | 223        | 81.9         | 0.5271                                  | 0.25/8/6/12  | 188.5      | 37.1 | 4.457                                    | 0.656020018 |
| 420                    | 220.2      | 81.8         | 0.3373                                  | 0.165019569  | 191.5      | 39.4 | 3.305                                    | 0.524/2//01 |
| 400                    | 200.0      | 81.0<br>55.1 | 0.1380                                  | 0.067808219  | 190.5      | 43.4 | 2.410                                    | 0.355007889 |
| 530                    | 254.3      | 76.6         | 0.07708                                 | 0.038003914  | 190        | 43.7 | 1.985                                    | 0.291875184 |
| 560                    | 234.3      | 79.1         | 0.07924                                 | 0.038767123  | 192.6      | 45   | 1.790                                    | 0.178539888 |
| 590                    | 294.1      | 41.5         | 0.07924                                 | 0.003907534  | 258        | 68.2 | 0.0755                                   | 0.011112747 |
| 570                    | Qam<br>125 | 11.0         | 0.007707                                | 0.000707001  | Qam<br>271 | 00.2 | 0.0755                                   | 0.011112/1/ |
| <b>T</b> (0 <b>C</b> ) |            |              | I                                       | <b>T</b> /TO |            |      | I                                        | 7/70        |
| T (°C)                 | D          | 1            | $(Am^2/Kg)$<br>$e^{-3}$                 | J/J0         | D          | 1    | (Am <sup>2</sup> /Kg)<br>e <sup>-4</sup> | <b>1/10</b> |
| 20                     | 47.3       | 14.5         | 2.118                                   | 1            | 6.7        | 55.1 | 10.04                                    | 1           |
| 100                    | 47         | 12.8         | 1.996                                   | 0.942398489  | 5.8        | 55.3 | 8.88                                     | 0.884462151 |
| 140                    | 48.6       | 12.6         | 1.691                                   | 0.798394712  | 6.5        | 58.7 | 7.492                                    | 0.746215139 |
| 180                    | 45.1       | 12.4         | 1.456                                   | 0.687440982  | 9          | 61.7 | 6.302                                    | 0.627689243 |
| 220                    | 45.2       | 13.2         | 1.261                                   | 0.595372993  | 11.1       | 63   | 4.672                                    | 0.465338645 |
| 260                    | 41.1       | 12.8         | 1.123                                   | 0.530217186  | 8.3        | 62.1 | 3.304                                    | 0.329083665 |
| 300                    | 37.4       | 12.9         | 0.928                                   | 0.438149197  | 358.2      | 59.8 | 1.471                                    | 0.146513944 |
| 340                    | 37.1       | 15.4         | 0.8221                                  | 0.388149197  | 358.3      | 59.3 | 1.759                                    | 0.175199203 |
| 380                    | 37.1       | 15.2         | 0.7106                                  | 0.335505194  | 8.4        | 60.1 | 2.26                                     | 0.225099602 |
| 420                    | 34.2       | 17           | 0.5839                                  | 0.275684608  | 1          | 61.5 | 2.248                                    | 0.223904382 |
| 460                    | 17.5       | 21.2         | 0.2915                                  | 0.137629839  | 2.8        | 63.9 | 1.028                                    | 0.102390438 |
| 500                    | 1.1        | 23.7         | 0.1901                                  | 0.089754485  | 4          | 72.8 | 0.4958                                   | 0.04938247  |
| 530                    | 342.3      | 25.1         | 0.1456                                  | 0.068744098  | 351.4      | 70.2 | 0.4053                                   | 0.040368526 |
| 500                    | 326.3      | 25.1         | 0.1099                                  | 0.051888574  | 349.6      | /1.3 | 0.2292                                   | 0.022828685 |
| 390                    | 309.8      | 23.4         | 0.01132                                 | 0.003439093  | 296.2      | 17.2 | 0.05115                                  | 0.005100598 |
|                        | Qam<br>381 |              |                                         |              |            |      |                                          |             |
| <b>Τ</b> (° <b>C</b> ) | D          | I            | $     \int \frac{J}{(Am^2/Kg)} e^{-3} $ | J/J0         |            |      |                                          |             |
| 20                     | 175.4      | 26.1         | 2.368                                   | 1            |            |      |                                          |             |
| 100                    | 174.7      | 25.3         | 2.329                                   | 0.983530405  |            |      | 1                                        |             |
| 140                    | 175.8      | 24.8         | 2.218                                   | 0.936655405  |            |      |                                          |             |
| 180                    | 177.1      | 25.3         | 2.113                                   | 0.892314189  |            |      |                                          |             |
| 220                    | 176.7      | 25.1         | 1.997                                   | 0.843327703  |            |      |                                          |             |
| 260                    | 173.8      | 25.4         | 1.917                                   | 0.809543919  |            |      |                                          |             |
| 300                    | 173        | 26.1         | 1.798                                   | 0.759290541  |            |      |                                          |             |
| 340                    | 176.4      | 25.8         | 1.712                                   | 0.722972973  |            |      | 1                                        |             |
| 380                    | 174        | 26           | 1.605                                   | 0.677787162  |            |      |                                          |             |
| 420                    | 177.9      | 26.2         | 1.496                                   | 0.631756757  |            |      |                                          |             |
| 460                    | 181.5      | 25.5         | 1.16                                    | 0.489864865  |            |      |                                          |             |
| 500                    | 180.5      | 26.4         | 0.7476                                  | 0.315709459  |            |      |                                          |             |
| 530                    | 1/9.4      | 26.1         | 0.4255                                  | 0.1/968/5    |            |      |                                          |             |
| 500                    | 182.1      | 27.1         | 0.16//                                  | 0.070819257  |            |      |                                          |             |
| 390                    | 100        | 51           | 0.01055                                 | 0.000980574  |            | 1    | 1                                        | l           |

From the above thermal and AF demagnetisation experiments it appears that the maximum blocking temperature is 590° C and

coercivity of remanence is 1000-2000 Oe, which indicate magnetite as the carrier of the characteristic magnetisation.

| QAN  | 1 382 |      |                       |                              |                | A    | SI 185 |      |                       |      |                |
|------|-------|------|-----------------------|------------------------------|----------------|------|--------|------|-----------------------|------|----------------|
| A.F  | D     | Ι    | J                     | e <sup>-3</sup><br>(unified) | J/J0<br>Qam382 | A.F  | D      | Ι    | J                     | e-4  | J/J0<br>Asi285 |
| 0    | 150   | 25.7 | 2.069 e <sup>-3</sup> | 2.069                        | 1              | NRM  | 190.7  | 61.5 | 1.062 e <sup>-3</sup> | 10.6 | 1              |
| 25   | 153   | 25.8 | 1.995 e <sup>-3</sup> | 1.995                        | 0.9642339      | 25   | 193.3  | 59.7 | 1.042 e <sup>-3</sup> | 10.4 | 0.9811676      |
| 50   | 151   | 26.8 | 1.686 e <sup>-3</sup> | 1.686                        | 0.8148864      | 50   | 191.9  | 58.4 | 9.965 e <sup>-4</sup> | 9.97 | 0.9383239      |
| 75   | 152   | 28.8 | 1.356 e <sup>-3</sup> | 1.356                        | 0.6553891      | 75   | 191.2  | 56.8 | 9.356 e <sup>-4</sup> | 9.36 | 0.8809793      |
| 100  | 157   | 29.6 | 1.208 e <sup>-3</sup> | 1.208                        | 0.5838569      | 100  | 188    | 54.5 | 8.777 e <sup>-4</sup> | 8.78 | 0.8264595      |
| 150  | 156   | 28.8 | 1.099 e <sup>-3</sup> | 1.099                        | 0.5311745      | 150  | 183.7  | 50.8 | 7.909 e <sup>-4</sup> | 7.91 | 0.7447269      |
| 200  | 157   | 28.9 | 1.022 e <sup>-3</sup> | 1.022                        | 0.4939584      | 200  | 181.2  | 48.4 | 7.275 e <sup>-4</sup> | 7.28 | 0.6850282      |
| 250  | 158   | 29   | 9.529 e <sup>-4</sup> | 0.9529                       | 0.4605607      | 250  | 178.7  | 45.8 | 6.738 e <sup>-4</sup> | 6.74 | 0.6344633      |
| 300  | 157   | 27.9 | 8.915 e <sup>-4</sup> | 0.8915                       | 0.4308845      | 300  | 177.3  | 44.4 | $6.206 e^{-4}$        | 6.21 | 0.5843691      |
| 400  | 158   | 29.7 | 7.480 e <sup>-4</sup> | 0.748                        | 0.3615273      | 400  | 173.2  | 42.6 | 4.980 e <sup>-4</sup> | 4.98 | 0.4689266      |
| 500  | 158   | 31   | 6.332 e <sup>-4</sup> | 0.6332                       | 0.3060416      | 500  | 170.5  | 43.2 | 3.711 e <sup>-4</sup> | 3.71 | 0.349435       |
| 600  | 158   | 28.3 | 4.904 e <sup>-4</sup> | 0.4904                       | 0.2370227      | 600  | 172    | 44.1 | 2.728 e <sup>-4</sup> | 2.73 | 0.2568738      |
| 800  | 158   | 29   | 3.145 e <sup>-4</sup> | 0.3145                       | 0.1520058      | 800  | 171.2  | 47.3 | $1.512 e^{-4}$        | 1.51 | 0.1423729      |
| 1000 | 154   | 29.6 | $2.013 e^{-4}$        | 0.2013                       | 0.0972934      | 1000 | 171.6  | 50.9 | 9.130 e <sup>-5</sup> | 0.91 | 0.0859699      |

Table 6) Record of change in intensity of remanence for 2 pilot samples during AF demagnetisation.

Table 7) Values of remanence and calculated x, y, z values used for the z-plots for five thermally demagnetised pilot Samples.

| Asi131                 |       |      |                                           |             |             |             |               |              |             |
|------------------------|-------|------|-------------------------------------------|-------------|-------------|-------------|---------------|--------------|-------------|
| <b>Τ</b> (° <b>C</b> ) | D     | Ι    | J(Am <sup>2</sup> /Kg)                    | J/J0        | Drad        | Irad        | X             | Y            | Z           |
| 20                     | 358.1 | 87.8 | 2 044                                     | 1           | 6 250024051 | 1 532300083 | 0.0784215     | 0.002601511  | 2.042493401 |
| 100                    | 235.3 | 87.8 | 1.896                                     | 0.927592955 | 4 10675973  | 1.532599085 | -0.056489022  | -0.081580509 | 1 893401598 |
| 140                    | 219.8 | 88.7 | 1.000                                     | 0.843444227 | 3 836233696 | 1.548107047 | -0.0300499022 | -0.025036587 | 1.723556258 |
| 180                    | 212.0 | 88   | 1.564                                     | 0.765166341 | 3.874630939 | 1.535889742 | -0.040562935  | -0.036523031 | 1.563047253 |
| 220                    | 217.2 | 87.7 | 1.414                                     | 0.691780822 | 3.790855135 | 1.530653754 | -0.045200169  | -0.034308796 | 1.412860875 |
| 260                    | 209.2 | 86.8 | 1.323                                     | 0.647260274 | 3.651228795 | 1.514945791 | -0.064466911  | -0.036029339 | 1.320937131 |
| 300                    | 214.1 | 82   | 1.38                                      | 0.675146771 | 3.736749929 | 1.431169987 | -0.15903634   | -0.107675697 | 1.366569935 |
| 340                    | 215.9 | 81.2 | 0.9927                                    | 0.485665362 | 3.768165855 | 1.417207353 | -0.123020246  | -0.089051807 | 0.981014314 |
| 380                    | 223   | 81.9 | 0.5271                                    | 0.257876712 | 3.892084232 | 1.429424657 | -0.054316937  | -0.050651363 | 0.52184147  |
| 420                    | 220.2 | 81.8 | 0.3373                                    | 0.165019569 | 3.843215013 | 1.427679328 | -0.036745264  | -0.031052156 | 0.333851523 |
| 460                    | 266.6 | 81.6 | 0.1386                                    | 0.067808219 | 4.653047786 | 1.42418867  | -0.001200783  | -0.020211469 | 0.137113145 |
| 500                    | 236.9 | 55.1 | 0.07768                                   | 0.038003914 | 4.134684998 | 0.961676418 | -0.024271115  | -0.037231815 | 0.063709398 |
| 530                    | 254.3 | 76.6 | 0.09598                                   | 0.046956947 | 4.438372288 | 1.336922207 | -0.00601901   | -0.02141331  | 0.093367029 |
| 560                    | 249.6 | 79.1 | 0.07924                                   | 0.038767123 | 4.356341813 | 1.380555438 | -0.005222977  | -0.014044161 | 0.077810408 |
| 590                    | 294.1 | 41.5 | 0.007987                                  | 0.003907534 | 5.13301333  | 0.72431164  | 0.002442596   | -0.005460491 | 0.005292346 |
| Asi284                 |       |      | _                                         |             |             |             |               |              | _           |
| T (°C)                 | D     | 1    | J(Am <sup>2</sup> /Kg)<br>e <sup>-4</sup> | J/J0        | Drad        | Irad        | X             | Y            | Z           |
| 20                     | 189.2 | 35.5 | 6.794                                     | 1           | 3.302162945 | 0.619591884 | -5.459950217  | -0.88431897  | 3.945295881 |
| 100                    | 187.7 | 35.5 | 6.678                                     | 0.982926111 | 3.275983006 | 0.619591884 | -5.387642123  | -0.728437795 | 3.877934338 |
| 140                    | 193.5 | 34.1 | 6.533                                     | 0.96158375  | 3.377212103 | 0.595157275 | -5.260247223  | -1.262873626 | 3.662654551 |
| 180                    | 190.8 | 35.8 | 6.446                                     | 0.948778334 | 3.330088213 | 0.624827872 | -5.135513045  | -0.979651507 | 3.770637173 |
| 220                    | 187.7 | 34.5 | 6.398                                     | 0.941713276 | 3.275983006 | 0.602138592 | -5.225215937  | -0.706476913 | 3.623867104 |
| 260                    | 188.3 | 34.3 | 6.357                                     | 0.93567854  | 3.286454982 | 0.598647933 | -5.196501468  | -0.75808758  | 3.582335093 |
| 300                    | 188.7 | 34.4 | 6.221                                     | 0.915660877 | 3.293436299 | 0.600393263 | -5.073969836  | -0.77642649  | 3.514659728 |
| 340                    | 186.3 | 34.7 | 5.799                                     | 0.853547248 | 3.251548396 | 0.60562925  | -4.738821465  | -0.52317076  | 3.301251956 |
| 380                    | 188.5 | 37.1 | 4.457                                     | 0.656020018 | 3.28994564  | 0.647517152 | -3.515784815  | -0.525437561 | 2.688498001 |
| 420                    | 191.5 | 39.4 | 3.565                                     | 0.524727701 | 3.342305518 | 0.687659725 | -2.699491862  | -0.549217827 | 2.26281428  |
| 460                    | 190.5 | 43.4 | 2.416                                     | 0.355607889 | 3.324852225 | 0.757472895 | -1.726009996  | -0.319897044 | 1.660003426 |
| 500                    | 190   | 43.7 | 1.983                                     | 0.291875184 | 3.316125579 | 0.762708883 | -1.411863579  | -0.248949642 | 1.370019821 |
| 530                    | 189.4 | 43   | 1.796                                     | 0.264350898 | 3.305653603 | 0.750491578 | -1.295873631  | -0.214530489 | 1.224869055 |
| 560                    | 192.6 | 46.8 | 1.213                                     | 0.178539888 | 3.361504139 | 0.81681409  | -0.810357987  | -0.181136471 | 0.884238945 |
| 590                    | 258   | 68.2 | 0.0755                                    | 0.011112747 | 4.50294947  | 1.19031455  | -0.005829484  | -0.027425568 | 0.07010068  |
| Qam                    |       |      |                                           |             |             |             |               |              |             |
| 125                    | D     | I    | J(Am <sup>2</sup> /Kg)                    | J/J0        | Drad        | Irad        | X             | Y            | Z           |
| T(°C)                  |       |      | e <sup>-3</sup>                           |             |             |             |               |              |             |
| 20                     | 47.3  | 14.5 | 2.118                                     | 1           | 0.825540736 | 0 253072742 | 1 390591293   | 1 50696935   | 0 530304849 |
| 100                    | 47    | 12.8 | 1.996                                     | 0.942398489 | 0.820304748 | 0.223402144 | 1.32744032    | 1.423505463  | 0.442210801 |
| 140                    | 48.6  | 12.6 | 1.691                                     | 0.798394712 | 0.848230016 | 0.219911486 | 1.0913466     | 1.237889729  | 0.368880221 |
| 180                    | 45.1  | 12.4 | 1.456                                     | 0.687440982 | 0.787143493 | 0.216420827 | 1.003773964   | 1.007283926  | 0.312654636 |
| 220                    | 45.2  | 13.2 | 1.261                                     | 0.595372993 | 0.788888822 | 0.230383461 | 0.865067438   | 0.871127928  | 0.287950447 |
| 260                    | 41.1  | 12.8 | 1.123                                     | 0.530217186 | 0.717330323 | 0.223402144 | 0.825221789   | 0.719886849  | 0.248798963 |
| 300                    | 37.4  | 12.9 | 0.928                                     | 0.438149197 | 0.65275314  | 0.225147474 | 0.718610297   | 0.549419058  | 0.207176108 |
| 340                    | 37.1  | 15.4 | 0.8221                                    | 0.388149197 | 0.647517152 | 0.268780705 | 0.632151329   | 0.478092295  | 0.218313684 |
| 380                    | 37.1  | 15.2 | 0.7106                                    | 0.335505194 | 0.647517152 | 0.265290046 | 0.546935778   | 0.41364428   | 0.18631163  |
| 420                    | 34.2  | 17   | 0.5839                                    | 0.275684608 | 0.596902604 | 0.296705973 | 0.461830501   | 0.313859684  | 0.170715838 |
| 460                    | 17.5  | 21.2 | 0.2915                                    | 0.137629839 | 0.305432619 | 0.370009801 | 0.259193933   | 0.081723533  | 0.105413562 |
| 500                    | 1.1   | 23.7 | 0.1901                                    | 0.089754485 | 0.019198622 | 0.413643033 | 0.17403538    | 0.00334165   | 0.076410272 |
| 530                    | 342.3 | 25.1 | 0.1456                                    | 0.068744098 | 5.97426203  | 0.438077642 | 0.125609195   | -0.040087008 | 0.061763436 |
| 560                    | 326.3 | 25.1 | 0.1099                                    | 0.051888574 | 5.695009349 | 0.438077642 | 0.082797747   | -0.055219233 | 0.046619517 |
| 590                    | 309.8 | 23.4 | 0.01152                                   | 0.005439093 | 5.407030023 | 0.408407045 | 0.006767581   | -0.008122703 | 0.004575144 |

#### Table 7) Continued.

| Qam<br>271 |       |      |                        |             |             |             |              |              |             |
|------------|-------|------|------------------------|-------------|-------------|-------------|--------------|--------------|-------------|
|            | D     | Ι    | J(Am <sup>2</sup> /Kg) | J/J0        | Drad        | Irad        | X            | Y            | Z           |
|            | 6.7   | 55.1 | 10.04                  | 1           | 0.11693706  | 0.961676418 | 5.705114427  | 0.670196915  | 8.234324834 |
|            | 5.8   | 55.3 | 8.88                   | 0.884462151 | 0.101229097 | 0.965167076 | 5.029323116  | 0.510860013  | 7.300639084 |
|            | 6.5   | 58.7 | 7.492                  | 0.746215139 | 0.113446401 | 1.024508271 | 3.867217324  | 0.440613758  | 6.401605555 |
|            | 9     | 61.7 | 6.302                  | 0.627689243 | 0.157079633 | 1.076868148 | 2.950920301  | 0.46737986   | 5.548768282 |
|            | 11.1  | 63   | 4.672                  | 0.465338645 | 0.193731547 | 1.099557429 | 2.081364539  | 0.408347488  | 4.162782481 |
|            | 8.3   | 62.1 | 3.304                  | 0.329083665 | 0.144862328 | 1.083849465 | 1.529846556  | 0.223180476  | 2.919961642 |
|            | 358.2 | 59.8 | 1.471                  | 0.146513944 | 6.251769381 | 1.043706893 | 0.739577225  | -0.023242151 | 1.271348234 |
|            | 358.3 | 59.3 | 1.759                  | 0.175199203 | 6.25351471  | 1.034980246 | 0.897649727  | -0.026641622 | 1.512480146 |
|            | 8.4   | 60.1 | 2.26                   | 0.225099602 | 0.146607657 | 1.04894288  | 1.114496692  | 0.164574553  | 1.959186653 |
|            | 1     | 61.5 | 2.248                  | 0.223904382 | 0.017453293 | 1.07337749  | 1.072489523  | 0.018720374  | 1.975580869 |
|            | 2.8   | 63.9 | 1.028                  | 0.102390438 | 0.048869219 | 1.115265392 | 0.451717533  | 0.022092673  | 0.923172348 |
|            | 4     | 72.8 | 0.4958                 | 0.04938247  | 0.06981317  | 1.270599695 | 0.146254912  | 0.01022714   | 0.473627012 |
|            | 351.4 | 70.2 | 0.4053                 | 0.040368526 | 6.133086992 | 1.225221135 | 0.135746837  | -0.020529779 | 0.381338976 |
|            | 349.6 | 71.3 | 0.2292                 | 0.022828685 | 6.101671065 | 1.244419757 | 0.072277255  | -0.013265359 | 0.217100596 |
|            | 298.2 | 17.2 | 0.03113                | 0.003100598 | 5.204571829 | 0.300196631 | 0.014052627  | -0.026208039 | 0.009205392 |
| Qam<br>381 |       |      |                        |             |             |             |              |              |             |
|            | D     | Ι    | J(Am <sup>2</sup> /Kg) | J/J0        | Drad        | Irad        | Χ            | Y            | Z           |
|            |       |      | e <sup>-3</sup>        |             |             |             |              |              |             |
|            | 175.4 | 26.1 | 2.368                  | 1           | 3.061307508 | 0.455530935 | -2.11967949  | 0.170545362  | 1.041775954 |
|            | 174.7 | 25.3 | 2.329                  | 0.983530405 | 3.049090203 | 0.441568301 | -2.096606147 | 0.194496272  | 0.995316464 |
|            | 175.8 | 24.8 | 2.218                  | 0.936655405 | 3.068288825 | 0.432841654 | -2.00804328  | 0.147461481  | 0.930344719 |
|            | 177.1 | 25.3 | 2.113                  | 0.892314189 | 3.090978105 | 0.441568301 | -1.907879982 | 0.09664903   | 0.903007165 |
|            | 176.7 | 25.1 | 1.997                  | 0.843327703 | 3.083996788 | 0.438077642 | -1.805422198 | 0.104099989  | 0.847126247 |
|            | 173.8 | 25.4 | 1.917                  | 0.809543919 | 3.03338224  | 0.44331363  | -1.721565017 | 0.18702181   | 0.822268651 |
|            | 173   | 26.1 | 1.798                  | 0.759290541 | 3.019419606 | 0.455530935 | -1.602618198 | 0.196776772  | 0.791010627 |
|            | 176.4 | 25.8 | 1.712                  | 0.722972973 | 3.078760801 | 0.450294947 | -1.538304243 | 0.0967819    | 0.745115642 |
|            | 174   | 26   | 1.605                  | 0.677787162 | 3.036872898 | 0.453785606 | -1.434661925 | 0.150789045  | 0.703585691 |
|            | 177.9 | 26.2 | 1.496                  | 0.631756757 | 3.104940739 | 0.457276264 | -1.341397025 | 0.049186796  | 0.660492756 |
|            | 181.5 | 25.5 | 1.16                   | 0.489864865 | 3.167772592 | 0.445058959 | -1.046640149 | -0.027407237 | 0.499392872 |
|            | 180.5 | 26.4 | 0.7476                 | 0.315709459 | 3.1503193   | 0.460766923 | -0.669608614 | -0.005843586 | 0.33240926  |
|            | 179.4 | 26.1 | 0.4255                 | 0.1796875   | 3.131120678 | 0.455530935 | -0.382089782 | 0.004001381  | 0.187194117 |
|            | 182.1 | 27.1 | 0.1677                 | 0.070819257 | 3.178244568 | 0.472984227 | -0.149188424 | -0.005470491 | 0.076394881 |
|            | 188   | 31   | 0.01653                | 0.006980574 | 3.281218994 | 0.541052068 | -0.014031084 | -0.00197194  | 0.008513579 |

 Table 8) Results of applying Krichsvink analysis on specimen Asi 131 to determine the number of linear segments and demagnetisation planes of component magnetisations and their directions.

| Directions | Directions which pass 5.0 Degree Linearity Test |             |           |              |             |          |     |          |  |  |  |  |
|------------|-------------------------------------------------|-------------|-----------|--------------|-------------|----------|-----|----------|--|--|--|--|
| SAMPLE     | DEMAG.STEPS                                     | GDEC        | GINC      | SDEC         | SINC        | INT      | PTS | ERR.ANG. |  |  |  |  |
| Asi 131    | 530 to 560                                      | 252.6       | 77.6      | 252.6        | 77.6        | 7.68E+04 | 3   | 2.2      |  |  |  |  |
| Asi 131    | 300 to 560                                      | 216.3       | 81.7      | 216.3        | 81.7        | 1.10E+06 | 9   | 1.5      |  |  |  |  |
| Asi 131    | 140 to 260                                      | 17.2        | 85.4      | 17.2         | 85.4        | 3.23E+05 | 4   | 2        |  |  |  |  |
|            |                                                 | ]           | No more   | linear se    | gments.     |          |     |          |  |  |  |  |
| Normal     | vectors to least-squ                            | are demag.p | lanes:A.S | S.D. less th | nan 5.0     |          |     |          |  |  |  |  |
| SAMPLE     | DEMAG.STEPS                                     | GDEC        | C Gl      | INC          | SDEC        | SINC     | PTS | ERR.ANG  |  |  |  |  |
| Asi 131    | 460 to 560                                      | 319.8       |           | -5           | 319.8       | -5       | 5   | 3.9      |  |  |  |  |
| Asi 131    | 140 to 530                                      | 302.1       | (         | ).4          | 302.1       | 0.4      | 11  | 5        |  |  |  |  |
| Asi 131    | 100 to 220                                      | 150.6       | 1         | .6           | 150.6       | 1.6      | 4   | 1.2      |  |  |  |  |
|            |                                                 | No i        | nore der  | nagnetisa    | tion nlanes |          |     |          |  |  |  |  |

# 4- Changes in the direction of remanent magnetisation

During the demagnetisation experiments, progressive changes occur in both intensity and

direction of remanent magnetisation. In the previous section, the change in the intensity of magnetisation of the pilot samples was reported. In this section the trend of change in the direction of magnetisation would be examined by plotting demagnetisation results on orthogonal diagrams (Zijderveld Diagrams).

The calculated x, y, and z values (Table 7) have been used to construct Zijderveld Diagrams or Z-plots that illustrate changes in the directions of magnetisation during the demagnetisation process for five thermally demagnetised pilot samples: Asi 131, Asi 184, Qam 125, Qam 271 and Qam 381. In the final analysis, i.e. the stage that corresponds to the last thermal demagnetisation step at  $590^{\circ}$  C is dropped because it is higher than the Curie temperature of Magnetite (580° C).

The plotted Zijderveld diagrams for the five pilot samples are shown in Figs.10, 11, 12, 13 and 14. For Jisr el Asi locality no tilt correction has been made, therefore the indicated directions are in situ results.



Figure 8) Decay of Intensity during demagnetisation. Progressive Thermal demagnetisation curves of five pilot specimens. Variation in the pattern of behavior of individual samples is evident and indicates the presence of multi-component system. This shows that identical hand specimens can have different magnetic composition.



Figure 9) Decay of intensity during demagnetisation. Alternating field demagnetisation curves of two pilot basalt samples, one from each locality. Note how remanence is very stable against AF cleaning. Such high stability against AF is characteristic of thermal remanent magnetisation (TRM). The plot points to 1000-2000 Oe coercivity of remanence.



Figure 10) Vector demagnetisation diagram (Zijderveld plot) of specimen Asi 131. Solid circles are projections of the magnetic vector that lie on the horizontal plane and open circles are projections onto the N-S vertical plane.

In the above diagram, by excluding the last value (corresponding to 590° C) because it is above the Curie point of Magnetite (580° C), the declination is southward. The inclination is downward and steep. In the demagnetisation different system components process are represented in Z-plots by different straight line segments. From this it can be seen that the plot exhibits some complexity due to multiphase composition (presence of various straight segments) and phase overlap (the connecting small curves between successive segments). This feature has also been indicated previously by our explanation for the change of intensity of magnetisation in thermal cleaning (Fig. 8). In this regard should be mentioned that the larger overlap of coercivity or blocking temperatures between the interlacing components the harder will be their isolation during the demagnetisation process. Because of this and also because that a certain amount of coercivity overlapping doesn't necessarily mean that blocking temperature overlapping has the same range, it becomes clear that proper choice of cleaning method (A.F. or thermal) is critical.

calculate the primary direction of magnetisation (Verosub, 2000). However in complex multiphase system discrimination or separation between primary and secondary directions is not a straight-forward procedure. Therefore it is desirable to have an estimate of the direction of the principal component of magnetisation and average direction of remanence from the various linear segments. In the present study, the estimation of directions of linear segments in the z-plots, original complex multivariate technique of Kirscvink (Kirschvink, 1980) is followed by the use of special software (x, y, z)for DOS. Because the precision of the segment lines that best fit along various demagnetisation paths in Zijderveld diagram is determined by MAD (maximum angular deviation) and since MAD values of  $\sim 10^{\circ}$  would yield better results (MacEllhiny and MacFadden, 2000), therefore a MAD value of  $5^{\circ}$  is adopted. The following table (Table 8) shows the results obtained for specimen Asi 131. From the Table 8 it can be observed that for

The straight line segments can be used to

From the Table 8 it can be observed that for sample Asi 131 there are three linear segments in the intervals denoted above along with the indicated inclinations and declinations. The average direction of these three components would then be  $162^{\circ}$  for the declination and  $81.6^{\circ}$  for inclination. Though such combination of

southward declination and downward (positive) inclination is interpreted here to indicate transitional /Intermediate polarity, the very steep inclination is queer in this context.



ASI 284

Figure 11) Vector demagnetisation diagram (Zijderveld plot) of specimen Asi 284. Solid circles are projections of the magnetic vector that lie on the horizontal plane and open circles are projections onto the N-S vertical plane lie on the vertical plane. It is clear that softer or secondary magnetisation are progressively eliminated in the range up to 3000 C where the curve shows successive directional changes until finally the primary/charachteristic component is isolated (see later note on the result of Kirschvink analysis of this sample).

In the Figure 11, once more for Al-Asi basalt locality, the z-plot of the other specimen, Asi 284, is shown. The declination is southward while inclination is down (positive), however, the inclination is moderate and unlike the anomalous steep values of specimen Asi 131. For defining the linear segments in the z-plots, Krischvink analysis is again applied. The results are shown in Table 9.

Table 9) Results of applying Kirschvink analysis on specimen Asi 284 to determine the number of linear segments and demagnetisation planes of component magnetisations and their directions.

| Direction | s which pass 5.                                                    | 0 degree L | inearity | Test  |       |          |         |          |  |  |  |  |
|-----------|--------------------------------------------------------------------|------------|----------|-------|-------|----------|---------|----------|--|--|--|--|
| SAMPLE    | DEMAG.STEPS                                                        | GDEC       | GINC     | SDEC  | SINC  | INT      | PTS     | ERR.ANG. |  |  |  |  |
| ASI 284   | 140 TO 560                                                         | 189.4      | 35.5     | 189.4 | 35.5  | 5.23E+06 | 13      | 4.8      |  |  |  |  |
| (No more  | linear segments                                                    | )          |          |       |       |          |         |          |  |  |  |  |
| Normal    | Normal vectors to least-squares demag.planes: A.S.D. less than 5.0 |            |          |       |       |          |         |          |  |  |  |  |
| SAMPLE    | DEMAG.STEPS                                                        | GDEC       | GINC     | SDEC  | SINC  | PTS      | ERR.ANG |          |  |  |  |  |
| Asi 284   | 500 to 560                                                         | 78.2       | 21.2     | 78.2  | 21.2  | 4        | 0.5     |          |  |  |  |  |
| Asi 284   | 500 to 560                                                         | 78.3       | 21.2     | 78.3  | 21.2  | 4        | 0.4     |          |  |  |  |  |
| Asi 284   | 420 TO 530                                                         | 102.2      | 1.5      | 102.2 | 1.5   | 4        | 3.1     |          |  |  |  |  |
| Asi 284   | 340 TO 460                                                         | 42.3       | 55.2     | 42.3  | 55.2  | 4        | 4.3     |          |  |  |  |  |
| Asi 284   | 260 TO 420                                                         | 197.8      | -61.8    | 197.8 | -61.8 | 5        | 3.1     |          |  |  |  |  |
| (No more  | demagnetisation                                                    | n planes)  |          |       |       |          |         |          |  |  |  |  |

A good analogy can be seen between the behaviour of this curve and that shown in Figure 8 where blocking temperature lies in the range 340-580° C. Application of Kirshsvink analysis Shows simpler component entity (in comparison to that of specimen Asi 131) where only one single linear segment is defined (within 5.0 degree linearity test) having 189.4° declination and 35.5° inclination. Thus by this southward declination and downward (positive) inclination a transitional direction/intermediate polarity is indicated. This general behaviour is similar to that of specimen Asi 131 though the latter has anomalous steep inclination. Next, the z-plots and associated Kirshsvink analysis were performed on specimens from the southern Al Qamoua locality.



Figure 12) Vector demagnetisation diagram (Zijderveld plot) for Qam 125 specimen. Solid circles are projections of the magnetic vector that lie on the horizontal plane and open circles are projections onto the N-S vertical plane lie on the vertical plane. The plot assumes simple component entity that has been also reflected previously in the demagnetisation curve of Figure 8 for the same specimen. This feature will be stressed once more by Kirschvink analysis as shown hereafter.

In the Figure 12, a northward declination and low-moderate down (positive) inclination is indicated for specimen Qam 125. This feature of the inclination differs from the other, previously described, specimens of the northern Al-Asi basalt locality. Applying Kirschvink analysis on this thermally demagnetised specimen provided the following data (Table 10).

This analysis shows that the identified linear segment includes the entire analysed spectrum (principal uni-phase) with northward declination of 45.1 and downward (positive) inclination of low-intermediate value of 13.5. This clearly defines Normal Polarity for the first site of Al-Qamoua locality (Qs1). The z-plot for the second specimen (Qam 271) from the southern Al Qamoua locality is shown in Figure 13.



Figure 13) Vector demagnetisation diagram (Zijderveld plot) for Qam 125 specimen. Solid circles are projections of the magnetic vector that lie on the horizontal plane and open circles are projections onto the N-S vertical plane.

In the Figure 13, the simple component behaviour becomes complicated the by appearance of another phase of opposite declination and inclination (reversed) (declination 207.3 and negative inclination of -58.8) in the  $300^{\circ}$  to  $380^{\circ}$  interval (compare with the "bump" for this same interval as shown in the curve of this specimen; Fig. 8). It is difficult speculate on this minor component. to Lightening effects or self-reversal may be invoked as possible explanations. In general, the specimen shows northward declination and down (positive) steeper inclination than that of specimen Qam 125. Applying Kirschvink analysis on this thermally demagnetised specimen provided the following results (Table 11).

Table 11) Krischvink analysis results for specimen Qam 271 that provide the identified number of linear segments and demagnetisation planes of component magnetisation and their directions.

| Directions which pass 5.0 degree Linearity Test |                     |             |           |             |          |          |         |          |  |  |  |  |
|-------------------------------------------------|---------------------|-------------|-----------|-------------|----------|----------|---------|----------|--|--|--|--|
| SAMPLE                                          | DEMAG.STEPS         | GDEC        | GINC      | SDEC        | SINC     | INT      | PTS     | ERR.ANG. |  |  |  |  |
| QAM 271                                         | 380 to 560          | 4.4         | 61.6      | 4.4         | 61.6     | 1.81E+06 | 7       | 3.5      |  |  |  |  |
| QAM 271                                         | 300 to 380          | 207.3       | -58.8     | 207.3       | -58.8    | 6.44E+05 | 3       | 2.4      |  |  |  |  |
| QAM 271                                         | 180 to 260          | 9.5         | 61.1      | 9.5         | 61.1     | 2.40E+06 | 3       | 2.8      |  |  |  |  |
| QAM 271                                         | 20 to 220           | 3.4         | 46.7      | 3.4         | 46.7     | 4.37E+06 | 5       | 4        |  |  |  |  |
|                                                 | No more linea       | ar segments |           |             |          |          |         |          |  |  |  |  |
| Normal v                                        | ectors to least-squ | uares demag | g.planes: | A.S.D. less | than 5.0 |          |         |          |  |  |  |  |
| SAMPLE                                          | DEMAG.STEPS         | GDEC        | GINC      | SDEC        | SINC     | PTS      | ERR.ANG |          |  |  |  |  |
| Qam 271                                         | 180 to 300          | 236         | 21        | 236         | 21       | 4        | 4.5     |          |  |  |  |  |
| No more d                                       | lemagnetisation r   | lanes.      |           |             |          |          |         |          |  |  |  |  |

Table 12) Kirschvink analysis results for specimen Qam 381 that provides the identified number of linear segments and demagnetisation planes of component magnetisation and their directions.

| Directions which pass 5.0 degree Linearity Test |                              |             |                |             |       |          |         |          |  |
|-------------------------------------------------|------------------------------|-------------|----------------|-------------|-------|----------|---------|----------|--|
| SAMPLE                                          | DEMAG.STEPS                  | GDEC        | GINC           | SDEC        | SINC  | INT      | PTS     | ERR.ANG. |  |
| Qam 381                                         | 220 to 560                   | 175.8       | 25.7           | 175.8       | 25.7  | 1.60E+06 | 11      | 4.1      |  |
| QAM 381                                         | 20 to 180                    | 177.7       | 2.7            | 177.7       | 2.7   | 1.55E+06 | 4       | 2.8      |  |
| No more lin                                     | near segments.               |             |                |             |       |          |         |          |  |
| Normal vect                                     | tors to least-squares        | demag.plane | es: A.S.D. les | ss than 5.0 |       |          |         |          |  |
| SAMPLE                                          | DEMAG.STEPS                  | GDEC        | GINC           | SDEC        | SINC  | PTS      | ERR.ANG |          |  |
| Qam 381                                         | 500 to 560                   | 39.7        | 57.3           | 39.6        | 57.4  | 4        | 3.3     |          |  |
| Qam 381                                         | 500 to 560                   | 44          | 55.5           | 44          | 55.5  | 4        | 2.7     |          |  |
| Qam 381                                         | 220 to 340                   | 155.8       | -68.4          | 155.8       | -68.4 | 4        | 4.9     |          |  |
| Qam 381                                         | 100 to 220                   | 88.7        | -29.4          | 88.7        | -29.4 | 4        | 2.9     |          |  |
| No more d                                       | lemagnetisation <sub>l</sub> | olanes      |                |             |       |          |         |          |  |

This analysis shows that the identified linear segment includes the entire analysed spectrum (principal uni-phase) with northward declination of 45.1 and downward (positive) inclination of low-intermediate value of 13.5. This clearly defines Normal Polarity for the first site of Al-Qamoua locality (Qs1). The z-plot for the second specimen (Qam 271) from the southern Al Qamoua locality is shown in Figure 13.

In the Figure 13, the simple component complicated behaviour becomes by the appearance of another phase of opposite (reversed) declination and inclination (declination 207.3 and negative inclination of -58.8) in the  $300^{\circ}$  to  $380^{\circ}$  interval (compare with the "bump" for this same interval as shown in the curve of this specimen, Fig. 8). It is difficult speculate on this minor component. to Lightening effects or self-reversal may be invoked as possible explanations. In general, the specimen shows northward declination and down (positive) steeper inclination than that of specimen Qam 125. Applying Kirschvink analysis on this thermally demagnetised specimen provided the following results (Table 11).

This analysis indicates that except for the minor component that appears in the interval 300° to 380° C, the identified linear segments of the specimen show northward declination averaging 5.80 and downward (positive) inclination averaging 56.50. This defines Normal Polarity for the second site of Al-Qamoua locality (Qs2).

Finally, the z-plot for the third specimen (Qam 381) from the southern Al Qamoua locality is shown in Figure 14.

The above z-plot for specimen Qam 381 indicates southward declination and downward-positive inclination. This transitional direction is different from the other two sites of the Al-Qamoua locality specimens (Qam 125 and Qam 271) and is similar to the direction revealed by the samples from of Al-Asi locality.



Figure 14) Vector demagnetisation diagram (Zijderveld plot) of specimen Qam 381.Solid circles are projections of the magnetic vector that lie on the horizontal plane and open circles are projections onto the N-S vertical plane.

Applying Kirschvink analysis on this thermally demagnetised specimen yielded the following results (Table 12).

analysis identifies two Kirschvink linear segments one for the interval 20 to 180° C and the other between 220 to  $560^{\circ}$  C. The average direction of both linear segments is a southward  $176.8^{\circ}$  declination and downward (positive)  $140^{\circ}$ inclination. These results define transitional/intermediate polarity. This separates the site of Tell Abu Tineh (Qs3) from the other two sites of Al-Qamoua locality (Qs1 and Qs2) and groups it with Al-Asi locality (As), however it has lower inclination than the value for both Asi 131 and Asi 284. This is feasible also from the provisional field geologic observations since Tell Abu Tineh site (specimen Qam 381) is located on the boundary between Al Qamoua locality and Al Asi locality. However, the reader is reminded that the provisional geological mapping conducted in the present research needs further data (large-scale mapping) to clarify the precise geologic relationship between these two effusive suites.

Summing up, the overall results from both Zijderveld diagrams and the associated Kirschvink analyses suggest that there are two basalt bodies representing two different volcanic outpourings: The first is characterized by transitional direction/(intermediate) polarity with southward declination and down (positive) inclination. This is represented by the basalts of the northern (As) locality and one (Qam 3) northernmost sampling site from the southern (Qs) basalt locality. The second is characterized by Normal Polarity with northward declination and down (positive) inclination. This is represented by the two southern basalt sampling sites (Qam 1 and Qam 2). These results confirm the initial conclusion on polarity of the samples gained from non-cleaned NRM data (Figs. 5, 6 and 7).

# **5- Magnetic Susceptibility**

Magnetic susceptibility in rocks is related to the magnetic content of the rock; specifically the amount, shape and composition of the magnetic minerals (Nagata, 1967; Tarling and Hrouda, 1993). Magnetic susceptibility is considered an indicator for the degree of magnetic anisotropy of rocks hence it is important in determining the reliability of NRM. Anisotropy of magnetisation, in terms of foliation and lineation parameters, leads to deviation in the alignment of primary magnetisation from that of the ambient field and the appearance of scatter in the observed directions of magnetisation. For measuring the bulk magnetic susceptibility of the basalt samples in the current study a susceptibility bridge KLY-3 and software SUSAR version 1.4 were used. Average weights of specimens are recorded in Tables 3 and 4. The most importantly measured parameters are shown in Table 13.

Variation of susceptibility at the successive thermal demagnetisation steps is shown in Figure 15.

### Lateef, 2016

| ASI131 |              |      |      |      |      |          | ASI284 |      |      |      |      |          |
|--------|--------------|------|------|------|------|----------|--------|------|------|------|------|----------|
| Т      | К            | L    | F    | Р    | Т    | K/KO     | К      | L    | F    | Р    | Т    | K/KO     |
| (°C)   | e-3          |      |      |      |      |          | e-3    |      |      |      |      |          |
| 20     | 2.22         | 1    | 1    | 1.01 | 0.33 | 1        | 9.79   | 1.01 | 1    | 1.01 | -0.4 | 1        |
| 100    | 2.33         | 1    | 1.01 | 1.01 | 0.58 | 1.051351 | 9.91   | 1.01 | 1    | 1.01 | -0.3 | 1.012874 |
| 140    | 2.52         | 1    | 1.01 | 1.01 | 0.5  | 1.133333 | 10.2   | 1.01 | 1    | 1.01 | -0.3 | 1.045264 |
| 180    | 2.67         | 1.01 | 1.01 | 1.02 | 0.42 | 1 204054 | 10.5   | 1.01 | 1    | 1.01 | -0.3 | 1.072852 |
| 220    | 2.07         | 1.01 | 1.01 | 1.02 | 0.41 | 1 216667 | 10.7   | 1.01 | 1    | 1.01 | -0.2 | 1.092265 |
| 260    | 2.76         | 1    | 1.01 | 1.02 | 0.51 | 1 240991 | 10.8   | 1.01 | 1    | 1.01 | -0.2 | 1 105548 |
| 300    | 2.70         | 1 01 | 1.01 | 1.02 | 0.31 | 1.240991 | 11     | 1.01 | 1    | 1.01 | -0.2 | 1.103546 |
| 340    | 3.05         | 1.01 | 1.02 | 1.02 | 0.44 | 1.204414 | 11 1   | 1.01 | 1    | 1.01 | -0.5 | 1.121090 |
| 290    | 3.05         | 1.01 | 1.02 | 1.03 | 0.41 | 1.024775 | 11.1   | 1.01 | 1    | 1.01 | -0.1 | 1.156626 |
| 380    | 4.27         | 1.01 | 1.02 | 1.03 | 0.48 | 2 992794 | 11.5   | 1.01 | 1    | 1.01 | -0.2 | 1.101276 |
| 420    | 8.02<br>22.0 | 1.01 | 1.02 | 1.03 | 0.4  | 3.883784 | 11.7   | 1.01 | 1    | 1.01 | -0.5 | 1.191370 |
| 460    | 33.9         | 1.01 | 1.02 | 1.03 | 0.32 | 15.26577 | 14.5   | 1    | 1    | 1.01 | -0.1 | 1.476448 |
| 500    | 34.2         | 1.01 | 1.02 | 1.02 | 0.39 | 15.3964  | 15.6   | 1    | 1    | 1.01 | -0.2 | 1.593951 |
| 530    | 32.8         | 1.01 | 1.01 | 1.02 | 0.36 | 14.79279 | 16.4   | 1    | 1    | 1.01 | -0.2 | 1.673649 |
| 560    | 31.2         | 1.01 | 1.01 | 1.02 | 0.4  | 14.04955 | 15.8   | 1    | 1    | 1.01 | -0.2 | 1.612343 |
| 590    | 25.4         | 1    | 1.01 | 1.01 | 0.65 | 11.45045 | 14.1   | 1    | 1    | 1.01 | -0.2 | 1.438643 |
|        | QAM          | 125  |      |      |      |          | QAM271 |      |      |      |      |          |
| Т      | К            | L    | F    | Р    | Т    | K/K0     | k      | L    | F    | Р    | Т    | K/K0     |
| (°C)   | e-3          |      |      |      |      |          | e-3    |      |      |      |      |          |
| 20     | 6.08         | 1.03 | 1.03 | 1.06 | 0.07 | 1        | 2.75   | 1.01 | 1.01 | 1.02 | 0.15 | 1        |
| 100    | 6.65         | 1.03 | 1.04 | 1.07 | 0.09 | 1.093796 | 3.13   | 1.01 | 1.01 | 1.02 | 0.2  | 1.136265 |
| 140    | 7.07         | 1.03 | 1.04 | 1.07 | 0.19 | 1.162909 | 3.21   | 1.01 | 1.01 | 1.02 | 0.26 | 1.166424 |
| 180    | 7.26         | 1.03 | 1.05 | 1.08 | 0.23 | 1.195327 | 3.18   | 1.01 | 1.01 | 1.02 | 0.27 | 1.155887 |
| 220    | 7.36         | 1.03 | 1.05 | 1.08 | 0.28 | 1.210959 | 3.22   | 1.01 | 1.01 | 1.02 | 0.21 | 1.170785 |
| 260    | 7.4          | 1.03 | 1.05 | 1.08 | 0.31 | 1.218035 | 3.23   | 1.01 | 1.01 | 1.02 | 0.28 | 1.172602 |
| 300    | 7.41         | 1.02 | 1.05 | 1.08 | 0.37 | 1.219023 | 3.22   | 1.01 | 1.01 | 1.02 | 0.43 | 1.170785 |
| 340    | 7.92         | 1.03 | 1.06 | 1.08 | 0.38 | 1.303933 | 4.03   | 1.01 | 1.01 | 1.02 | 0.46 | 1.464753 |
| 380    | 9.31         | 1.03 | 1.07 | 1.1  | 0.35 | 1.531512 | 6.99   | 1.01 | 1.02 | 1.03 | 0.45 | 2.541424 |
| 420    | 10.5         | 1.03 | 1.08 | 1.11 | 0.42 | 1.727826 | 10.2   | 1.01 | 1.02 | 1.03 | 0.51 | 3.69186  |
| 460    | 9.47         | 1.03 | 1.07 | 1.09 | 0.45 | 1.558828 | 8.36   | 1    | 1.02 | 1.02 | 0.72 | 3.039244 |
| 500    | 8.56         | 1.02 | 1.06 | 1.08 | 0.5  | 1.409083 | 7.92   | 1    | 1.02 | 1.02 | 0.86 | 2.87609  |
| 530    | 7.62         | 1.01 | 1.05 | 1.07 | 0.55 | 1.25325  | 7.39   | 1    | 1.01 | 1.02 | 0.74 | 2.68641  |
| 560    | 6.95         | 1.01 | 1.04 | 1.05 | 0.6  | 1.142834 | 7.06   | 1    | 1.01 | 1.01 | 0.29 | 2.565044 |
| 590    | 5.79         | 1.01 | 1.03 | 1.04 | 0.71 | 0.95195  | 5.83   | 1    | 1    | 1.01 | -0.3 | 2.118823 |
|        | OAM          | 381  | 1    | 1    |      |          |        |      |      |      | I    |          |
| Т      | k            | L    | F    | Р    | Т    | K/K0     |        |      |      |      |      |          |
| (°C)   | e-3          |      |      |      |      |          |        |      |      |      |      |          |
| 20     | 15           | 1.01 | 1.02 | 1.03 | 0.45 | 1        |        |      |      |      |      |          |
| 100    | 15.1         | 1.01 | 1.02 | 1.03 | 0.47 | 1.010027 |        |      |      |      |      |          |
| 140    | 15.3         | 1.01 | 1.02 | 1.03 | 0.44 | 1.024064 |        |      |      |      |      |          |
| 180    | 15.5         | 1.01 | 1.02 | 1.03 | 0.44 | 1.038102 |        |      |      |      |      |          |
| 220    | 15.7         | 1.01 | 1.02 | 1.03 | 0.45 | 1.04746  |        |      |      |      |      |          |
| 260    | 15.8         | 1.01 | 1.02 | 1.03 | 0.5  | 1.052807 |        |      |      |      |      |          |
| 300    | 15.8         | 1.01 | 1.02 | 1.03 | 0.46 | 1.054813 |        |      |      |      |      |          |
| 340    | 15.8         | 1.01 | 1.02 | 1.03 | 0.53 | 1.058824 |        |      |      |      |      |          |
| 380    | 15.8         | 1.01 | 1.02 | 1.03 | 0.53 | 1.057487 |        |      |      |      |      |          |
| 420    | 15.7         | 1.01 | 1.02 | 1.03 | 0.49 | 1.052139 |        |      |      |      |      |          |
| 460    | 15.4         | 1.01 | 1.03 | 1.03 | 0.58 | 1.027406 |        |      |      |      |      |          |
| 500    | 14.9         | 1.01 | 1.02 | 1.03 | 0.58 | 0.995321 |        |      |      |      |      |          |
| 530    | 14.4         | 1.01 | 1.02 | 1.03 | 0.59 | 0.960561 |        |      |      |      |      |          |
| 560    | 14           | 1.01 | 1.02 | 1.03 | 0.55 | 0.933155 | 1      |      |      |      |      |          |
| 590    | 13.3         | 1.01 | 1.02 | 1.03 | 0.53 | 0.891043 | 1      |      |      |      |      |          |
|        | •            |      | •    | •    | •    |          | •      |      |      |      |      |          |

Table 13) The most important parameters of susceptibility measurements of five thermally demagnetised pilot samples (ASI 131, ASI 184, QAM 125, QAM 271 and QAM 381). Volume of specimens (v) = 11.70 (for volume susceptibility). The k, L, F, P and T represent susceptibility, lineation, foliation, degree of anisotropy and shape parameter.



Figure 15) Susceptibility changes (at room temperature) during progressive thermal demagnetisation of five pilot samples. Note that specimen asi 131 shows abrupt increase in the interval 400°C - 460°C followed by steady decrease with two deflection points one at 480°C and the other at 500°C denoting significant chemical alteration of the sample (hence a change in its magnetic properties). Sample Qam 271 shows but lesser change in the interval 340°C-420°C reflecting some degree of mineralogic change. The other three samples show negligible or very small change in the course of successive heating.

#### 6- Anisotropy of Magnetisation

In palaeomagnetic work, an important issue is to check the degree of representation of the measured remanence to the direction of the ancient ambient field. This can be achieved by determining the anisotropy of magnetisation. The anisotropy in rocks is related to the shape of the constituent minerals and their alignment. It can also be produced after the acquisition of remanence as a result of external factors such as stress effects (tectonic and non-tectonic). For this reason magnetic anisotropy represents also a magnetic method to determine the petrofabrics of rocks and the evaluation of the strain evolution and strength of all rock types (Tarling and Hrouda, 1993). The higher the anisotropy the lesser parallelism would be. If the limit of 5% is exceeded then divergence should be considered significant (Irving, 1964). One of the magnetic methods to determine the anisotropy is by measuring the variation in susceptibility (Girdler, 1961). Thus, maximum, intermediate and minimum susceptibility values define the three principal axes of triaxial ellipsoid (or susceptibility ellipsoid) that portrays the susceptibility anisotropy of a rock sample (Irving, 1964; Tarling and Hrouda, 1993).

In thermal remanent magnetisation (TRM), if the rock is anisotropic then the acquired magnetisation during the cooling process would not be exactly parallel to the ambient field but it would be deflected in the direction of maximum anisotropy "the easy direction". The larger value of the anisotropy, the more deflection from the ambient field.

For sample ASI 131: K1=1.000, K2=1.003 and K3=0.909 Where K1, K2 and K3 are the principal susceptibilities (maximum, intermediate and minimum respectively) of the sample in SI units. The declination (D) and inclination (I) of the above maximum (K1), intermediate (K2) and minimum (K3) principal susceptibilities are 144/21, 330/60, and 236/5 respectively. The calculated average values of different anisotropy parameters are: L=1.005, F=1.014, P=1.019, T=0.435 and q = 0.331, where L, F, P, and T and q correspond to magnetic lineation, magnetic foliation, prolatenees and shape parameters respectively. Both T and q (shape parameters) are calculated in two different ways where q follows Granar formula (Granar, 1958).

For sample QAM 125: K1 = 1.032, K2 = 1.000 and K3=0.960. The declination (D) and inclination (I) of the above maximum (K1), intermediate (K2) and minimum (K3) principal susceptibilities are 106/39, 336/38

and 350/28 respectively. The calculated average values of different anisotropy parameters are: L=1.023, F=1.050, P=1.075, T=0.362 and q=0.391.

The interest is to observe the degree of anisotropy of magnetic susceptibility (AMS), hence the degree of deflection of the acquired magnetisation from the ambient field. The degree of anisotropy or the anisotropy factor (in terms of susceptibility) according to Irving (1964), Nagata (1967) and MacElhinny and MacFadden (2000) is defined as:

An= Xmax / Xmin. From Table 13 and the values of the two stereographic plots, the degree of anisotropy of the five demagnetised pilot samples is: An =1.01 for both ASI 131 and ASI 284, An=1.08 for QAM 125, An=1.02 for QAM 271 and An=1.03 for QAM 381.



Figure 16) Stereographic-polar projection of the anisotropy directional data. Solid squares correspond to direction of maximum principal axis, solid triangles for the direction of the intermediate principal axis and solid circles stand for the minimum principal axis. As observed in these two projections, the directions form three separate groups, thus they define triaxial susceptibility ellipsoid. The most favourable case for the deflection of the TRM from the direction of the ambient field occurs when the applied earth magnetic field is along the plane of the maximum-minimum susceptibility.

The value An = 1.01 means that maximum susceptibility exceeds the minimum by 1% which indicates that the sample has 1 percent anisotropy of magnetic susceptibility (for both samples from Al Asi locality). For the other three samples from Al-Qamoua locality we have 8% anisotropy for sample QAM 125, 2% anisotropy for sample QAM 271 and 3% anisotropy for sample Qam 381. Stereographic projection for the anisotropy directional data of two samples (ASI 131 and QAM 125) is shown on Figure 16.

It can be observed that the samples from Al-Qamoua locality show higher anisotropy than those of Al-Asi locality.

In the plane that contains both axes of maximum and minimum susceptibility (that is the favourable direction for the occurrence of deflection in the acquired magnetism when the direction of the applied field follows this path) consider that both the ambient magnetic field and TRM make angles  $\theta$  and  $\phi$  respectively with the axis of maximum susceptibility, then the relation of both angles to the degree of anisotropy (An) can be written in equation form:

$$(\theta - \phi)_{\max} = \tan \left[ An - 1/2 An \right]$$

Accordingly, the anisotropy of susceptibility 1% (or An=1.01) for the two samples of Al-Asi locality indicate that the maximum TRM deflection from the direction of the ambient field is less than  $1^{\circ}$  (0.63°). For the other three samples from Al-Qamoua locality the maximum deflections of the acquired magnetisation from the ambient field are as follows: sample QAM 125 (with anisotropy of susceptibility 8% or An=1.08) the maximum deflection is  $5.7^{\circ}$ , for (with sample QAM 271 anisotropy of susceptibility 2% or An=1.02) the maximum deflection angle is 1.1° and for sample QAM 381 (with anisotropy susceptibility 3% or An=1.03) the maximum deflection angle is  $1.7^{\circ}$ .

Of importance in this regard is the limit of TRM deflection (or in other words the degree of

anisotropy) that is considered critical before the deviation from the ambient magnetic field becomes important. Irving (1964) considered a limit of anisotropy of about 5 percent (corresponding degree to of anisotropy An=1.05) but he stated also that the effect of anisotropies of approximately 10% to 20 % (corresponding to deflections of  $5^{\circ}$  to  $10^{\circ}$ respectively) would be averaged out in certain circumstances. However, MacEllhinny and Macfaden (2000) are reluctant to consider a limit of 10% anisotropy (corresponding to degree of anisotropy An=1.1) before significant divergence of TRM can occur. Therefore the calculated values for the angle of deflection of the five measured basalt samples of this study are all below the suggested limit and they occur within the tolerance range, hence the measured TRM directions are representative of the ambient field at the time of cooling of these basalts through their blocking temperature.

# 7- Correlation with the geomagnetic polarity time scale (mpts)

In a previous study, the present author has shown that the basalts of the present investigation have <sup>40</sup>Ar/<sup>40</sup>Ar age estimates of  $10.4 \pm 0.37$  Ma and  $10.87 \pm 0.31$  Ma (Lateef, 2014). Comparison of the gained polarity of the basalt samples with the Geomagnetic Polarity Timescale of Cande and Kent (1992; 1995) suggest that the palaeomagnetically investigated basalts are within the long ~1 Myr (9.92-10.95 Myr) normal subchron C5n.2n. On the other the transitional hand, polarity probably corresponds to a cryptochron within C5n.2n (C5n.2n-1 to C5.2n-3).

# 8- Conclusions

The preliminary palaeomagnetic results of this paper indicate that the basalts from Al Asi location and from Qam 3 location belong to one volcanic flow characterized by transitional polarity. Sites Qam 1 and Qam 3, on the other hand, belong to another volcanic emplacement that shows normal polarity. The normal component is correlated to the long normal polarity subchron C5n.2n while the transitional/ intermediate component is possibly related to a cryptochron within C5n.2n.

# Acknowledgment

Considerable help and support was received from Dr. J. Hus. Director of the palaeomagnetism laboratory of the Centre of Physics of Earth, Dourbes, Belgium. The author is also thankful for Prof. Lisa Tauxe of University California, San Diego who read the manuscript and made encouraging comments. I also thank M.A. Ghanmi and an anonymous referee for their notes and evaluation on the submitted manuscript.

# References

- Cande, S. C., Kent, D. V. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research: 97, 13917–13951.
- Cande, S. C., Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research: 100, 6093–6095.
- Girdler, R. W. 1961. Some preliminary measurements of anisotropy of magnetic susceptibility of rocks. Geophysical Journal of the Royal Astronomical Society: 5, 197– 206.
- Granar, L. 1958. Magnetic measurements on Swedish varved sediments. Arkiv för geofysik: 3, 1–40.
- Gregor, C. B., Hertzman, S., Nairn, A. E. M., Megendank, J. 1974. The paleomagnetism of some Mesozoic and Cenozoic volcanic rocks from The Lebanon. Tectonophysics: 21, 375–394.

- Henry, B., Homberg, C., Mroueh, M., Hamdan,
  W., Higazi, F. 2010. Rotation in Lebanon inferred from new palaeomagnetic data and implications for the evolution of the Dead Sea Transform system. Homberg, C. and Bachmann, M. (Eds): Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic. Geological Society, London, Special Publications: 341, 269–285.
- Irving, E. 1964, Paleomagnetism and its application to geological and geophysical problems, New York, John Wiley and Sons.
- Kirschvink, J. L. 1980. The least-square line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society: 62, 699–718.
- Lateef, A. S. A. 2014. Miocene Volcanism in Lebanon Revealed By <sup>40</sup>Ar/<sup>39</sup>Ar Geochronology of Basalts from the North of the Bekaa Valley. Journal of Advances in Geology: 1, 1–12.
- McElhinny, M. W., McFadden, P. L. 2000. Paleomagnetism: continents and oceans, second ed. Academic Press, San Diego.
- Nagata, T. 1967. Rock magnetism. In Runcorn, S.K. (Ed.), International dictionary of geophysics. Pergamon Press, Oxford-London, 1277–1280.
- Tarling, D. H. and Hrouda, F., 1993. The magnetic anisotropy of rocks. Chapman and Hall, London.
- Van Dongen, P. G., Van der Voo, R., Ravan, Th. 1967. Paleomagnetism and the Alpine tectonics of Eurasia III. Paleomagnetic research in the Central Lebanon Mountains and the Tartous area of Syria: Tectonophysics, 4, 35–53.