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Abstract 

The lithologies of regions, which located near the collision zone, are very different from other 

geology setting. Mapping in these areas needs extensive and exact studies and tools because of the 

variety of rocks, intensive tectonic uplift and complicated units. Hyperspectral sensor is one of the 

most advanced tools with hundreds of bands that each measures a very narrow range of 

wavelengths and continuous bands in visible and infrared spectrums, so it can identify various 

terrain despites with spectral similarities and complications. In present study, as the first survey of 

hyspectral data efficiency for separating ophiolite melange units in Iran, we applied spectral - based 

method of support vector machine classification method on Hyperion image, in east of Iran. Based 

on various laboratory- field studies, the lithology of studied area can be separated into five general 

groups (ophiolite series, metamorphic units, Oligocene - Miocene to Quaternary volcanic units, 

limestone and flysh units). In this region for calculation of processing results accuracy rate, some 

scattered locations and points were sampled according to field surveys. These samples were 

analyzed in microscopic section and by electron microprobe. Points of Grand though selected based 

on these field-laboratory studies for compute results accuracy rate. According to results, the average 

overall accuracy for all lithology has reached 52% in total colored- mélanges of the studied area at 

the east of Iran.  The user accuracy factor of SVM method is highest for the lithology with more 

spectral separability. These coefficients are acceptable ratios in separation of ophiolites as actual 

complicated units. 
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1–Introduction 

Ophiolite mélanges of Iran represent a part of an 

ophiolite belt extending from Pakistan via Iran 

to Turkey, Greece and some other countries in 

Europe (Ghazi et al., 2004). The majority of 

these ophiolite outcrops contain a complete 

succession, although some outcrops are 

incomplete and occasionally are considered as 

colored mélanges as a result of tectonic 

activities acting upon them. The ophiolites of 

Iran are grouped according to their age into 

Paleozoic (Weber-Diefenbach et al., 1984) and 

Mesozoic (Arvin and Robinson; 1994) groups 

(Fig.1). The latter group is much more 

widespread and ophiolites of the studied area 

belong to this category. Hyperspectral mapping 

using spectroradiometry is a technology for 

attaining spectrometric data. Spectroradiometry 

is based on the interaction of surficial molecular 
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structure of a substance with electromagnetic 

waves impinging on it. Natural substances 

constituting the Earth’s surface will absorb, 

reflect or scatter the electromagnetic waves 

according to their composition. It is possible to 

determine the spectrometric response of 

different substances. The resulting curves are 

used as indicators for identification of different 

substances and their composition (Clark et al., 

1993).  

 
Figure 1) Distribution map of Mesozoic ophiolite 

belts of Iran (from Moghadam, et al. 2013). 

Hyperspectral sensors are capable to image in 

numerous extremely narrow spectral bands. So, 

their spectral data can be used for determination 

of substances with very small differences in 

spectral patterns. Separation and mapping of 

ophiolite mélanges is usually challenging 

because they have very complex and cluttered 

units. Hence, hyperspectral mapping with field 

checking may facilitate their separation and 

mapping. 

1.1–Hyperion sensor 

Hyperion represents the first airborne 

hyperspectral sensor mounted on EO-1 

platform. Hyperion images are taken in 242 

narrow bands in wavelengths between 356 to 

2577 nanometers with 10 nanometers spectral 

and 30 meters spatial resolution and each image 

includes a narrow band 7.7 km in width and 185 

or 42km in length (Pearlman et al., 2003).  

These images are readily used in geological 

investigations (Kruse et al., 2003; Xu et al., 

2014). Hyperspectral data may be used for 

studying spectral patterns of surficial materials. 

Hyperion sensor is a push broom system that 

covering a square area 7.7 km in length. 

Therefore, in these sensors, spectral data are 

recorded as three-dimensional cubic frames with 

totally 242 imaging bands. 

1.2–Previous studies 

Hyperion hyperspectral images have been used 

in agriculture, mineral exploration, separation of 

land units as well as other fields of geological 

sciences. For example, Kruse et al (2003) have 

compared the capability of airborne 

hyperspectral data of Hyperion for spectral 

separation of land surface minerals. Hubard et 

al (2003) have compared mineral alteration 

mapping of visible to shortwave infrared 

Hyperion with ALI and ASTER images. In 

addition, using EO-1 Hyperion images, Kruse 

(2003) have prepared the hyperspectral map of 

coral reefs of Buck Island in central Atlantic 

Ocean. In addition, using EO-1 satellite data, 

Beiranvand Pour and Hashim (2011) have 

prepared the geological map of the southeastern 

part of the central Iranian Volcanic Belt. Some 

other relevant studies using hyperspectral data 

in geological investigations include Coops et al 

(2002), Staenz et al., (2002), Pearlman et al., 

(2003), Felde et al., (2003) ,Bindschodler an 

Choi(2003), Ramsey et al., (2004), Khurshid et 

al., (2006), Gersman et al., (2008) and 

Leverington (2008). Geological investigations 

undertaken in the studied include Fotoohi Rad 

(1996, 2004 and 2009), Brocker et al., (2005), 

Fotoohi Rad et al., (2005) and Theunissen et al., 

(2004). However, no remote sensing studies 

have taken place in this area up to now, and the 

present study is the first one to employ 

hyperspectral data for separation of ophiolite 

mélanges. About capable of spectral processing 

method that use for present study Kovacevic et 

al., (2009) and Goodarzi Mehr et al., (2012) 
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used support Vector Machine classification 

method for lithological mapping and gotten 

satisfactory results. Abedi et al., (2011) used 

Support Vector Machine classification method 

for mineral mapping and exploration of 

porphyry-Cu deposits in Kerman province of 

Iran. Their results indicated the capability of 

SVM as a supervised learning algorithm tool for 

predictive mapping of mineral prospects. Also 

Goodarzi Mehr et al., (2012) used support 

Vector Machine classification method for 

lithological mapping and compared potential of 

the SVM in different kernels with other 

methods. They concluded that SVM method has 

high capability in extraction and separation of 

lithological units. 

1.3–Geological setting 

The studied area lies in the structural zone of 

Sabzevar-Sistan, which formerly was described 

by Mc Call and Kidd (1981) and Tirrul et al., 

(1983). In this zone, volcanic and plutonic rocks 

which are widespread include calk-alkaline 

volcanic rocks aging late Cretaceous-Paleocene. 

They are observed in the eastern and 

northeastern part of Sistan region and have been 

ascribed to subduction of an oceanic plate under 

the Afghan block (Tirrul et al.,1983). Among 

the volcanic rocks aging Eocene- Pliocene, 

Eocene – Oligocene volcanics including 

Porphyry andesites, Pyroclastic and dacitic 

lavas are much more common. The oldest 

volcanic rocks, which have been named 

“Cheshmeh Ostad Group” (Tirrul et al, 1983), 

are ophiolitic in character, although lack 

ultramafic and layered gabbro. Cheshmch Ostad 

intrusive as well as calk-alkaline intrusives 

aging upper Eocene- lower Oligocene 

(including Zahidan granite) intruded into 

slightly metamorphosed marine detrital deposits 

of Neh complex (Camp and Griffis, 1982). The 

youngest volcanic activities in Sistan structural 

zone include Quaternary olivine basalts, which 

cover older units in the northern part of this 

zone. The studied ophiolite mélange is 

intermingled with flysches, which are partially 

metamorphosed, so that a major part of the 

ophiolites has been metamorphosed. There is a 

conspicuous metamorphosed zone in the eastern 

part of Eastern Iran ophiolites comprising green 

schists, epidote amphibolites, amphibolites, blue 

schists and eclogites. This metamorphic zone is 

very conspicuous (Fotoohi Rad, 1983). Such 

rocks play a key role in recognition of the 

tectonic environment and evolution of orogenic 

belts and commonly represent locations of 

oceanic crust seduction before collision of 

continental crusts (Bucher and Fry, 1994 and 

Gomes – Pugnair et al, 2003) .Oligocene – 

Miocene volcanic activities in eastern Iran 

include dacites, riodacites, andesitic dacites, 

porphyroidal quartz- diorites and andesitic 

basalts which commonly lie at the higher parts 

of the region. 

2–Materials and Methods 

2.1–Hyperion sensor 

Preprocessing of data taken from Hyperion 

sensor include organization of bands in a form 

of processable digital data, calculation of central 

wavelength of spectrum  and modification of 

this parameter in all bands, removing bad bands, 

erasing strip lines in image bands using  cornels, 

and  finally geometric and atmospheric 

corrections. In this studied, we used L1 data set 

of EO1-hyperion system that does not require 

some preparations such as stacking. In addition, 

since the studied area is located at the central 

part of satellite imaging belt and the MNF 

number of one, our data have not been too 

destroyed by streak or smile effect. In 

organization and filtration of image bands, 78 

bands of the total 242 imaged bands wave 

wiped out due to unsuitable quality of data, So 

155 bands were studied. Geometric correction 

was undertaken by images of Quickbird satellite 

mounted on the Global Positioning System 

(GPS) and via field studies. Atmospheric 

correction of Hyperion data performed using 
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Internal Average Relative Radiance (IARR) or 

relative average of reflectance as a suitable 

preprocessing for recovering spectral 

information on hyperspectral data in a semi-arid 

region. 

 

2.2–Classification using SVM 

The Support Vector Machines (SVM) method is 

a nonparametric and controlled statistical 

method and acts upon the premise that data set 

distribution types are unknown. The main 

character of this method is its high capability in 

using trained samples and attaining higher 

accuracy in comparison with other methods of 

classification (Montero et al., 2005 and 

Mountrakis et al., 2011). In reality, the support 

vector machine is a binary classification, which 

separates two classes by a linear boundary and 

relies on generalized linear classifiers 

(Bhambhu and Srises Tava, 2009). SVM 

classifies the data by passing a plane (linear 

boundary) and by using all bands and 

employing an optimization algorithm. In this 

process, at first margin pixels were determined. 

In another words, a number of training points 

which are nearest to decision border were 

considered as support vectors. Although, 

increasing the dimensional of data leads to 

better results. In reality, if in spectral space the 

classes have interference, the data sets are 

transfered into a space with larger 

dimensionality so that their separation becomes 

possible. In this algorithm, the main purpose is 

to find the farthest distance between two classes 

which leads to more accurate classifications, 

while generalization error decreases (Zhang et 

al., 2008). The main distinguishing component 

of SVM is the trend of this algorithm on a rule 

that is known as Structural Risk Minimization 

(SRM). In reality, the SVM minimizes the 

classification errors in unobserved data lacking. 

Statistical techniques such as maximum 

likelihood estimation usually assume that data 

distribution is known a priori (Mountrakis et al., 

2011). The optimum border is used for 

determination of decision border at each 

completely- separated two classes. (Van Pik and 

Cher Voncnkis, 1991). The linear margin 

between the two classes is completed so that: 

a) All samples belonging to +1class are 

located in one side of the border and all samples 

belonging to -1 class are located in the other 

side. 

b) The decision border must be so selected 

that the distance of training samples between 

each couple of classes in orthogonal direction 

with respect to decision border becomes as 

maximized as possible (Keshavarz and 

Ghasemian Yazdi, 2007), i.e, in this method, 

firstly, the distance between the nearest training 

samples of the two adjacent classes in 

orthogonal directionsare computed and 

subsequently by solving the optimization 

function, best margins are determined (Goodarzi 

Mehr et al., 2012). Two parallel planes are 

defined in the two sides of decision border, so 

that the border plane contains the maximum 

equal distance with respect to these two plains. 

Generally   increasing the distance between two 

parallel planes make higher accuracy of 

classification (Srivastava et al., 2009). Actually, 

this algorithm seeks to find a hyperplane which 

can act so that while being compatible with 

training data, can separate the data set from each 

other (Mountrakis et al., 2011). 

An optimal hyperplane separates the classes 

with a decision surface that maximizes the 

margin between the classes (keshavarz and 

Ghasemian Yazdi, 2007). The optimized hyper 

plane separator term refers to a range which, by 

using training data, makes the number of 

incorrectly classified pixels minimized 

(Mountrakis et al., 2011). There are several 

kernels for defining this border plane (Fig. 2). 

Whenever the data cloud contains too much 

interference it is possible to use polynomial 
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kernel with different terms and gammas or use 

Radial Basis Function (RBF) kernels. The 

pertaining equations for these three kernels are 

the following: 

LinearK (xi،xj) = xi
T
xj 

Polynomial  K (xi،xj) = (gxi
T
xj + r)

d
، g> 0 

RBF K (xi،xj) = exp(-g||xi - xj||
2
)، g> 0 

 
Figure 2) The SVM method to classify the two 

classes using a linear kernel in two dimensions 

(Goodarzi Mehr et al., 2012). 

In the above equations, T represents transposed 

matrix, G gamma parameter, d represents the 

degree of Polynomial kernel and xj and xi 

represent the vector components j and i. In this 

study, classification of lithological units was 

conducted using the above –mentioned three 

kernels and the degree of polynomial and 

different gamma values. Afterwards, the results 

were analyzed. Obviously, in nonlinear SVM 

kernels, gamma parameters control the form of 

decision border. Its low values make the 

decision border linear in form and with 

increasing its values, the flexibility of decision 

border increases and therefore the decision 

border closes further to the form of data cloud 

of each class. Changes in d parameter increase 

the flexibility of the separating hyperplane. 

(Goodarzi Mehr et al., 2012). 

3–Sampling method and laboratory studies 

According to the field studies undertaken by 

authors as well as the geochemical, 

mineralogical, geothermobarometric and 

geochronologic studies (Fotoohi Rad 1996, 

2004 and 2009), Fotoohi Rad et al., (2005), 

Brocker et al., (2011), Theunssen et al., (2011) 

and Brocker et al., (2013) the rock units of the 

studied area are classified into five general 

groups. Also in several field checking studies, 

all rock units were sampled. Accordingly, the 

igneous rocks may be divided into two general 

groups (1) units related to ophiolite mélange and 

(2) Oligo-Miocene volcanic complex. 

 
Figure 1) A- sub ophitic to granular texture on isotropic gabbro (XPL). B- Abundant plagioclase 

Plagiogranite belonging to the ophiolite complex (XPL). C- Microscopic images of silica Listwanite (XPL). 

D- Listwanitization of peridotites (View of the West). E- Isotropic gabbro and listwanitizationperidotite and 

sequence of Paleocene - Eocene limestones on them (view to north). F- White Plagiogranite cropped (away) 

and peridotite and the metamorphic zone border (near) (see the West). 
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3.1–Ophiolite mélange 

This unit is composed of (1) magmatogenic 

units of ophiolitic sequence such as peridotites, 

gabbro, microgabros, diabases and 

plagiogranites and (2) secondary units created 

from metamorphism and alteration of 

magmatogenic units, which include 

metaperidotites, metagabbros, serpentines, 

milonitized metaplagiogranites and listvinites. 

The main characteristics of these units are 

presented in Fig. 3 depicts some microscopic 

and field image of them. 

3.2–Oligo-Miocene volcanics 

These volcanics lie in the form of a magmatic 

arc in the east of the studied area and follow the 

general trend of the region (Fotoohi Rad, 2004). 

According to the Tirrol et al (1983), 

crystallization of these rocks, which also lie in 

Nehbandan quadrangle map, is younger than 

igneous rocks comprising ophiolite mélange and 

belong to volcanic activities in upper 

Cretaceous, Oligo- Miocene and Quaternary 

times in eastern Iran. They also include andesite 

to andesitic basalts of Oligo- Miocene time. In 

accordance with pyroclastics, andesites, 

porphyritic andesites and andesitic basalts are 

usually observed as large outcrops and comprise 

high mountains. In porphyritic andesite 

plagioclases, hornblendes, and biotites are 

observed as coarse crystals and phenocrysts in a 

ground mass composed of plagioclase microlites 

and small crystals of amphiboles and opaque 

minerals. In the samples, plagioclases are 

altered into serisite and carbonate and to a lesser 

amount into kaolinite and epidote. Their texture 

is almost porphyritic. It is worth mentioning that 

one of the main differences between these rocks 

with andesitic basalts is the lack of olivine and 

clinopyroxene in them (Fig. 4). 

 
Figure 4) Microscopic images of rock samples: A - andesite - amphibole of the opacities, B-diorite porphyry, 

C-andesite basalt - the presence of olivine and pyroxene as phenocrysts in the background of Plagioclase 

microlite XPL. 

3.3–Metamorphic units 

Although outcrops of metamorphic rocks are 

observed in all parts of the studied area, but the 

majority lie in the metamorphic rocks at the east 

of ophiolite mélange. Scattered outcrops are 

observed in other parts of the ophiolite unit.In 

this metamorphic zone, flyshes and the rocks 

related to ophiolitic complex, which 

predominantly have been mafic and ultramafic, 

are metamorphosed. The main facieses include 

green schist (including talk schist) facies, 

epidot- amphibolite schist (including epidote 

amphibolites and epidote- amphibolite- schist) 

facies, amphibolite facies (including 

amphibolites and garnet-amphibolite schists) 

(Fig 5). 

3.4–Sedimentary units 

Although, in comparison with igneous and 

metamorphic rocks, the sedimentary rocks are 

less common and diverse but, however, there 

are several scattered units of this kind in the 

studied area which include (1) Paleocene -

Eocene limestones which outcrop in the eastern 

part a the area, (2) micritic and sapary 

limestone, cherts and radiolarites intermingled 

with ophiolite mélange and flyshes composed of 



Journal of Tethys: Vol. 1, No. 4, 315–326                                                                                                    ISSN: 2345–2471 ©2013 

                                                                                     321                       

siltstones, fine sandstones and cherty shales 

which are predominantly metamorphosed. 

 
Figure 5) A: the remarkable extent of metamophic 

units (see the North East), B: sight near the 

amphibolite schist with copper mineralization, C: 

schistosity in rocks¬greenschist (XPL); D: 

schistosity in schist, amphibolite rocks; (XPL). 

4–Discussion 

4.1–Data analysis 

Algorithm analysis in processing of 

hyperspectral data by Kruse et al., (2003) 

Leverington (2008), Bahram Beigi et al., (2012) 

attest to the higher efficiency of processing 

which are based on spectral pattern in 

comparison with those which are based on 

statistical models.  

 
Figure 6) Hyperion image processing area on the 

output map of SVM method. 

Therefore, in order to determine the potential of 

hyperspectral data to separate ophiolite 

mélanges, the SVM algorithm was selected and 

small areas in five general lithologies were 

considered for SVM analysis. In this respect, the 

reflectance pattern of several rock units was 

used as mixed spectrum of index pixels for 

training points.  

 
Figure 7) Part of Tabas Messina area map, 1:20000 

from Fotoohi Rad (2004). 

For every lithological unit, the spectral patterns 

were determined in images. Eventually, 

according to theoretic basis of SVM, this 

processing method is performed on Hyperion 

data and results were presented as classification 

image (Fig. 6). Figure 6 shows the extracted 

classes from processed images of Hyperion 

image and Figure 7 is part of the map presented 

by Fotoohi Rad (2004) in the area with 1:20000 

scale. Visual comparison of the processed image 

with geological map of the area represents a 

favorable conformity in the majority of parts. It 

is worth mentioning that the geological map is 

prepared in a very smaller scale and less 

accuracy, in comparison with the processed 

images. In the following, the results of 

hyperspectral processing are compared with 

field studies. 

4.2–Results 

In order to access the separation capability of 

the SVM method on Hyperion image of the 

area, the enhanced zones were indexed as vector 

data on Quick bird image of the area and 

evaluated in field studies. Also for computing 
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the overall accuracy of the processing method, 

as indicator of incoherence of rock units in 

ophiolite mélange, criterion accuracy selected as 

sampling points. Since band widths in 

hyperspectral sensors are narrow and very 

thinner than multispectral one the energy supply 

of receiving waves by sensor was necessarily 

taken from wider spaces.  

 
Figure 8) Location of sampling points on the band of 

98 in Hyperion image.  

As a result, the hyperspectral images lack high 

spatial resolution (Alavipenah, 2008). In field 

studies, in order to increase the accuracy and 

clarity of traverses, vector maps resulting from 

the processing of Hyperion image were imposed 

on a Quickbird image having 60-centimeter 

spatial resolution using GIS technique. These 

maps which were introduced into a GPS were 

used as guides to the sites indicated in 

processing of Hyperion image. Also during field 

studies, coordinates of the sampling points (Fig. 

8) were determined on Hyperion image and the 

samples were classified into five groups: 

ophiolite mélange, metamorphic units, 

Oligocene Miocene volcanic, flyshes and 

limestones. The coordinates of sampling points 

were set on Hyperion image as vector data and 

location of pixels encircling the points indicated 

as training data on Hyperion image was defined 

and indexed as the class of each lithology in 

through image. Controlled classification 

presents a digital basis for quantitative 

comparison of the results taken from image 

processing and field data in the form of zones 

limited to pixels having proper values. The 

Confusion Matrix of indexed pixels in 

classification and the sampled points in field 

and laboratory studies (Table 1) were 

determined by implementing controlled 

classification methods for pixel data resulted 

from processing by SVM method on Hyperion 

image of the studied area.  

Table 1) Supervised classification accuracy matrix 

of the optimal pixels in the SVM image processing 

method. 

Class                    Unclassifie     An     Calc        Fy       Melang   Meta 

 Unclassified  7667            4            1            1            4               0

An         2857            3            0            1            1               1

calc 1688            0            8            1            0               0

fy      5125            2            0            5            0               0

Melange 2587            1            0            0            2               1

metamorph  4137            0            1            2            3               8

Total     24061        10          10          10           10             10

 

The digital basis of comparison in controlled 

classification method may by expressed by such 

factors as producer accuracy or user accuracy. 

In this study, considering the nature of field 

studies, the best comparison index for using 

controlled classification matrix is producer 

accuracy. In the images resulted from 

processing, of the total classified pixels in each 

class, 10 pixels were selected and tested in the 

field, microscopic and laboratory studies. The 

results are presented as producer accuracy 

matrix and user accuracy (Table 2).  

Table 2) Coefficient of user accuracy and producer 

accuracy on optimal pixel in the SVM image 

processing method. 

    Class                 Prod. Acc.            User Acc.        Prod. Acc.           User Acc.  

                                 (Percent)          (Percent)            (Pixels)            (Pixels)  

 Unclassified 31.86                   99.87              7667/24061      7667/7677

An 30.00                   0.10                      3/10                  3/2862

calc 80.00                   0.47                     8/10                  8/1697

Fy 50.00                   0.10                    5/10                   5/5132

Melange 20.00                   0.08                   2/10                    2/2592

metamorph 80.00                    0.19                  8/10                    8/4151

 

The producer accuracy of each class is shown in 

blue color in the Table 2. In these tables "An" 

refer to Andesitic lava; Calc refer to limestone; 

Fy refer to Flyshe and Mela refer to mélange. 
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Among the items affecting the accuracy index 

we can mention to the degree of polynomial 

kernel and the gamma value. In the present 

study, we tested the range values of 0 to 10 and 

best results obtained in the range of 3 to 7 value 

with little change so we used the six values for 

our calculation. Similarly, we test the 

polynomial kernels of 1 to 6 and the result was 

that the best overall accuracy is obtained at 

polynomial kernel value of three so we used 

only the results in this polynomial kernel value 

for our judgment. Since our study presents for 

finding acceptable accuracy rate for ophiolite 

mélanges area as extremely cluttered lithology 

units, we have presented only best resulted rates 

of gamma and polynomial kernel values. 

Different lithologies in the ophiolite complexes 

of study area have different accuracy level. 

Examination of the values expressed in 

producer accuracy table seems promising, thus 

the metamorphics and limestones, which 

contain more separable spectral patterns from 

each other, have the higher user accuracies 

because 80 pixels of these lithologies are  

classified correctly. The lowest user accuracies 

belong to the completely intermingled part of 

ophiolite mélange in which only about 20 pixels 

of these lithologies are classified correctly. 

Generally, the overall accuracy for all five 

lithological units is 52%, which considered as a 

permissible value for separation of extremely 

sophisticated ophiolite mélanges. 

5–Conclusions 

In this study, it was shown that hyperspectral 

data processing could be cheap and useful tools 

for separating lithological units of ophiolite 

complexes. Since ophiolite mélanges are one of 

the most cluttered, highly diverse among 

geological sitting, their mapping has always 

been difficult, expensive and time- taking. We 

tried to present a processing method for 

simplifying the hard effort for obtaining a good 

overall accuracy of 52% for it without any 

extensive field studies. The results of our 

studies are such expectations, so that units with 

minimum contortions such as limestone and 

metamorphic units have best correlations with 

field studies than others with high mixing such 

as mélanges. In the SVM processing method as 

a good classification scheme for lithology 

separation, we obtained the best results with the 

gamma values of six and polynomial kernel 

value of three. 
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