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Abstract 

Nowadays providing geologic maps using satellite images has been developed.  By using  

hyperspectral images more accurate studies in a wide range have been done.  Since it is so  

expensive to provide these maps  with field measurements  therefore  it is better to use 

new methods. This study provides a lithological and alteration mapping units with 

dominant minerals based on hyperspectral images of EO1-Hyperion satellite. To do so, 

two different zones  were  investigated:  the  Cuprite-Nevada  and  Mozahem  volcano  in  

Iran  which  have suitable conditions for our study. Five methods with different structures  

have been used: SAM, ACE, CEM, OSP, and LSU  to evaluate their  ability  of  geological 

unit  separation. The results show that the differences and separability level in spectral 

signatures of training data are main factors in affecting the results in covariance base 

methods  but  it is low in the linear methods. This study revealed the accuracy of 86.45% 

for LSU in mineral mapping of Cuprite area and 69.54% for ACE in alteration mapping 

for Mozahem volcano which displays more efficiency than the other methods.  

 

Keywords: Hyperspectral  Remote  Sensing,  Unmixing, MNF, Mineral  mapping, Alteration 

mapping. 

 

1- Introduction 

Since high ability of hyperspectral images 

in identifying geological features, this 

technique of remote sensing has been 

increased in recent years (Vane et al, 1985, 

Vane and Goetz 1988, 1993). The analysis 

of spectral matching and unmixing methods 

are used for many geological subjects and 

mineral mapping (e.g. Mustard and Pieters, 

1986; Gillespie et al., 1990; Boardman and 

Huntington, 1996; Staenz et al., 1999; 

Neville et al., 1998). The spectral mapping 

by using imaging spectroscopy data is a 

common method in the remote sensing 

studies (Nolin and Dozier, 1993; Hamilton 

et al., 1993). These studies showed that 

natural surfaces are rarely homogeneous. 

So spectral unmixing should identifies 

mixed endmembers and then evaluate their 

fractions (Plazel et al., 2004). The umixing 

by using known endmembers is the most 

important method in the unmixing 

techniques (Boardman 1991; Boardman 

1989) that has many applications in mineral 

and alteration mapping. Prihantarto et al 

(2012) have analyzed the soil features and 

mapped them based on mixing different 
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values of pixels and by using Earth 

Observing Advanced Land Imager (EO1-

ALI) and unmixing methods. Van der Meer 

(2008) has classified minerals and provided 

their maps in south Spain by Landsat 

images based on unmixing methods. He 

used evaluated values of endmember 

spectrum and linear spectral mixing model. 

Staenz et al (2000) provided the map of 

minerals in Tundra and by using Constrain 

Linear Spectral Unmixing (CLSU) and 

Probe-1 airborne hyperspectral sensor 

provided detailed mineral mapping. 

Hosseinjani and Tangestani (2011) by 

using sub-pixel methods of LSU, Mixture 

Tuned Matched Filtering (MTMF) and 

ASTER images provided altered minerals 

and found that the MTMF method displays 

a higher accuracy in mineral mapping. 

Gabr et al (2010) by using the ASTER data 

and sub-pixel and N-dimensional feature 

space methods separate the hydrothermal 

alteration zones in west part of the 

Egyptian desert. Study of mineral mapping 

and soil characteristics based on unmixing 

methods have been done by many authors 

(e.g. Perry 2000; Kruse et al., 2011; Kruse, 

2012). 

In this study we used hyperspectral images 

of EO-1 satellite and five unmixing 

methods for mineral and alteration mapping 

of two different areas (Mozahem volcano, 

Iran and Cuprite-Nevada, America) and 

compared their results. 

2- Studied areas 

The Mozahem volcano is located next to 

Shahr-e-Babak, Kerman province, SE Iran 

in the south part of Urumieh-Dokhtar 

volcanic belt. The selected area is on the 

volcano's caldera with longitudes of E 

           -           and latitudes of N 

           till          . The Mozahem 

volcano has Eocene igneous rocks that have 

been covered by lava, breccia and Neogene 

tuffs and its youngest sediment unit 

consists of sandstone and Neogene 

conglomerate. 

The Cuprite in Nevada, USA has with 

longitudes of W                         

and latitudes of N                     . 

Because of spread individual lithological 

units, this area is very ideal for remote 

sensing studies (Rowan et al., 2003; Clark 

et al., 2003; Swayze et al., 2003; Mars and 

Rowan, 2006; Kruse, 2012 among others). 

These studies idiciated that the Cuprite area 

shows high mineralization of hematite, 

jarosite, goethite, muscovite, chlorite, 

calsite (Fig. 1). 

3- Methodology 

3.1- Preprocessing 

Hyperion images have several errors that it 

is necessary to correct them before use that 

for analysis. So some modification was 

implemented as below. Based on metadata 

file on level 1R images, some processing 

steps such as the correction of Echo, 

Smear, and Dark object subtraction have 

been done. According to analyzing images 

of these zones, bad bands were omitted (84 

bands of Mozahem volcano and 77 bands 

of Cuprite area) and based on determined 

values (Barry 2001) by scaling factor, 

converting DN to radiance by dividing in 

two parts SWIR and VNIR has been done. 

Then by a set of data and level1R images 

bad pixels have been omitted. To remove 

streaks of images, the Datt et al’s (2003) 

method was used. Analyzing MNF-1 

images in SWIR and VNIR showed us 

there is a gradient in grey levels in VNIR. 

To do so column mean adjusted in MNF 

space that was used by Goodenough et al 

(2003) for Hyperion images, was used for 
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smile correction. Then Internal Average 

Reflectance (IAR) method was used to 

reduce the atmosphere effects that are 

applied for desert areas (kurse 1988, Robert 

1986, Ben-Dor et al 1994). For geometric 

correction with some problems in SWIR by 

using GPS points and suitable diffusion, 

conformity of VNIR and SWIR was 

modified. 

3.2- Classification of Minerals and 

alterations 

Before classifying the images, due to the 

high noise and number of spectral bands, 

the MNF (Green, et al., 1988) 

transformation was performed on the 

datasets. In other words, in a common 

practice, MNF components with 

eigenvalues less than one are usually 

excluded from the data as noise in order to 

improve the subsequent spectral processing 

results (Research Systems Inc., 2003). 

Since the eigenvalues of 15 MNF images of 

the data were greater than one, the 15 bands 

were retained for subsequent data 

processing in two study areas. This step is a 

statistical data reduction technique that 

performs a series of two Principal 

Components Analyses (PCA) to isolate 

noise and reduce the dimensionality of a 

hyperspectral dataset (Green et al., 1988).  

 

 
Figure 1a) Mozahem volcanic, Iran, b) Cuprite Nevada (Swayze et al., 2010). 

In this study, to examine the classification 

of geological units of the five general 

methods used which have different 

structural functions. These functions 

divided in three basic concepts. The first 

used method was Spectral Angle Mapper 

(SAM) that uses the angular difference 

between observation vector and source 

spectrum in spectral space to determine the 

possible percent of target existence. In the 

classification by using this method, it is 

assumed that data is in reflection stage and 

mistakes are not considerable (Kurse and 

Lefkoff, 1993). But the second and third 
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methods have linear base structure. An 

important assumption of LSU is that the 

reflectance at each pixel of the image is the 

linear proportion-weighted combination of 

the reflectance of each endmember present 

within the pixel (Smith et al., 1990). 

Orthogonal Subspace Projection (OSP) is 

an unconstrained and another linear based 

method that only can detect one target in 

each implementation. It removed undesired 

targets and tries to improve the result of 

detection. Indeed, it does it by breaking 

matrix to desired target vector and 

undesired target (Mangari et al., 2010). The 

concept of this operator is the production of 

orthogonal subspace on undesired target 

spectral vectors. If the undesired target 

spectral vectors brought into such a 

subspace, they would be removed because 

the image of a vector on orthogonal 

subspace is equal to zero. If spectral vector 

of a desired pixel is projected in such a 

space, the similarity of the pixel with the 

target or lock of similarity with the 

background may be observed. 

One of the OSP method constrains is its 

needs to some information about 

characterizations of undesired spectral 

target, which is very difficult to get this 

information. But for the whole extraction of 

such information we should estimate some 

undesired targets in the image. Totally, 

Constrained Energy Minimization (CEM) 

is a semi-supervised method and uses FIR 

filter, which passes the received energy in 

one direction and minimizes received 

energy of other sources (Chang, 2003). 

Adaptive Coherence Estimator (ACE) is 

another covariance based method that uses 

a distribution function for modeling 

background. In other words, this method 

does not need to use spectrum of pure parts 

of background that is equal to removing 

structural background. In this method 

background is considered as a Gaussian 

distribution function that the average is 

zero and covariance is    . Therefore, 

these five methods that are shown in the 

Table 1 were used to mapping the 

alterations and lithological units in two 

study areas. 

4- Results 

In order to compare and evaluate of 

lithological mapping methods with 

dominant mineral and alteration zones, the 

following methods are used: Confusion 

matrix, computing Kappa coefficient and 

analyzing the amount of the separability of 

classes by using Jeffries-Matusita index 

(Bhattacharyya, 1943). The used data are 

gathered by field studies and previous 

reports. As the Figure 2a and 2b show, the 

LSU results are better for separation of 

lithological units by dominant mineral in 

comparison with the others and it has 19.89 

percent more accurate than the second rank 

method (i.e. ACE). However, for alteration 

mapping the ACE method shows the best 

results and its overall accuracy and Kappa 

coefficient are 69.54% and 0.5448, 

respectively, while the LSU method 

acquires third rank. The result of classes 

discrimination by using Jeffries-Matusita 

index in Cuprite area shows that the LSU 

method has high aacuracy (e.g. 0.949) 

rather than other methods (Fig. 3). The 

results of this index for Mozahem volcano 

are close to the result of Cuprite area 

(Figure 4). The results of SAM in 

Mozahem volcano have low accuracy in 

spite of its high ability for class 

discrimination. This is could be caused by 

false classification of highly and weakly 

altered units. In other words, although the 

altered units have easily separated from 
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together but this method by using weakly 

altered units samples, classified high 

altered unites and causes the mistake. 

Table 1) The used methods for this study, where d is the target spectrum, x is the pixel spectrum, f 

is proportions of the various endmembers in a pixel,    is covariance matrix and R is the 

background correlation or covariance matrix. 

 

The SAM method shows low accuracy for 

alteration classification of Mozahem 

volcano. It is because of the same direction 

occurring of base and target vectors with 

different values.  In this condition, because 

of computing of vector length the both 

pixels acquire the same value, while 

actually they are different, especially when 

the spectral signatures of training samples 

come closer to each other. Because the 

source of these two methods is MNF 

transformation, the analysis of spectral 

signature can describe it better (Figure 5). 

As shown in Figure 5a the pixel values of 

the first MNFs in Mozahem volcano show 

small difference with those of Cuprite. This 

closeness in spectral values of MNF in 

Mozahem volcano takes place in the first 

bands of spectral values in MNF, while in 

Cuprite it starts from sixth band the spectral 

difference of training samples remains 

constant and enlarges the angle of spectral 

difference, reference and target spectrum, 

that improve the efficiency of the SAM in 

Cuprite area compared with Mozahem 

volcano. 

The ACE and the CEM are based on image 

covariance, however in some cases the 

matrix of covariance has been used. The 

disadvantage of these methods is that the 

matrix of covariance is produced only once 

for all pixels, and surrender of the pixel 

values it is constant which could reduce 

accuracy of detection. 
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If the pixel values have high differences the 

CEM and the ACE methods, an overall 

covariance cannot be a suitable weight for 

all pixels. Because of high spectral 

difference in MNF space (Figure 5a) in 

Cuprite in compared with Mozahem 

volcano (Figure 5b) it is expected that these 

two methods is suitable for the Mozahem 

volcano, because its low spectral 

differences of training samples (Fig. 5).

 

Figure 2) The Kappa coefficient and confusion matrix values of the study areas. a) Kappa 

coefficient for cuprite area; b) The confusion matrix for Cuprite area; c) Kappa coefficient for 

Mozahem volcano; d) The confusion matrix Mozahem volcano. 
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Figure 3) The results of Jeffries-Matusita index in output image of detectors in the Cuprite area 

(rectangles show the low and high changes in the values of this index in each pair class). 

 

Figure 4) The Jeffries-Matusita indexes for output image of detectors on three classes for the 

Mozahem volcano. 

In these cases linear evaluation methods 

such as OSP and LSU act well and in the 

studied area the LSU shows good results. In 

OSP because of the presence of orthogonal 

subspace and separation of target matrix 

into matrix of desired and undesired types, 

in each stage they show different results in 

compared with LSU. This separation is to 

improve the accuracy but the presence of 

spectrum of non-target can be considered as 

a noise, which decreases the accuracy in 

compared with LSU. Figures 6 and 7 show 

the classified image of each method based 

on overlaying of the Hyperion detector 

images. 
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Figure 5a) The average  spectral signature of training samples for each class in the first fifteen 

bands of MNF in Cuprite area (1) Jarosite+Geothite; 2) Hematite; 3) Chlorite + Muscovite; 4) 

Alluvial fan; 5) Fe-bearing minerals +Muscovite; 6) Fe-bearing minerals; b) The average spectral 

signature of training samples for each class in the first fifteen bands of MNF for three alteration 

units in Mozahem volcano (1) Low alterated andesites -pyroclastic rocks; 2) Andesites and 

granodiorite with medium alteration-phyllic alteration; 3) High altered clays and serisite -argillic 

alteration. 

 
Figure 6) The classification of three alteration units in the Mozahem volcano in Shar-e-Babak 

based on five used methods that overlaying on 8
th
 band of Hyperion image. 

 

Figure 7) The classification of six units in the Cuprite-Nevada based on five used methods that 

overlaying on 8th band of Hyperion image. 
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5- Conclusions 

The analyzing of target detection in a sub-

pixel level shows that the methods are 

highly depend on the difference between 

spectral signatures of source samples and in 

covariance methods of ACE and CEM the 

change of covariance matrix could affect 

the accuracy. In the linear methods such as 

LSU and OSP, this spectral signature 

differences is less effective. The highest 

changes in results took place for the SAM 

method. As a whole, the results show that 

sub-pixel methods of LSU, OSP, CEM, and 

SAM are more effective for separation of 

lithological units with dominant mineral 

than alteration classification and the 

Hyperion images can provide accurate 

maps. 
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